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1 Introduction 

General computing over a widely distributed set of het- 
erogeneous machines - typically called metacomputing 
- offers definite advantages. In addition to allowing a 
single application to  bring together different types of 
resources, such as specialized data sources, data bases, 
and visualization systems, it allows an application to  
acquire and utilize many different machines to attain a 
level of compute power that is not possible any other 
way. It may also be more cost-effective to aggregate 
several machines over a network on a per-need basis 
rather than acquire and maintain one large machine. 

The performance of metacomputing systems, how- 
ever, can be highly dependent on the available net- 
work bandwidth and latencies. While performance can 
be improved by designing applications to adapt to the 
available bandwidth and tolerate latencies, the notion 
of quality of service (QoS) for metacomputing is very 
important. However, QoS in a metacomputing envi- 
ronment has a broader scope than in just a networking 
environment. 

Much work has been done on how to provide QoS in 
networks. The literature has investigated both connec- 
tionless [l] and connection-oriented [8] networks, result- 
ing in an extremely large archive of results. Less thor- 
oughly investigated, however, are the problems that 
arise in providing end-to-end QoS to large applications. 
The exception here, of course, is network-based multi- 
media, such as the popular MBone-based tools [lo], in 
which it is paramount to assure that the required QoS 
can be provided from a source - typically a stream- 
ing video or audio source - to  one or more destina- 
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tions. The service model for these tools tends to be 
an isochronous bit rate with minimal delay jitter and 
low packet loss. We anticipate that metacomputing 
will need a substantially different service model for the 
non-visualization applications. 

QoS specification and management can be imple- 
mented at different levels of abstraction. The Inte- 
grated Services Architecture, which includes the Reser- 
vation Protocol [a] (RSVP), serves as Qualis’ basic 
mechanism for QoS signaling protocol and traffic man- 
agement. This is an example of a low-level QoS mecha- 
nism that allows reservations to  be made on a network 
for a flow between a sender and a receiver. Quality of 
Service for CORBA Objects (QUO) [ll] is an example 
of high-level QoS that augments the CORBA Interface 
Definition Language with a QoS Definition Language 
(QDL) that allows specification of QoS in terms of ob- 
ject behavior, e.g., method invocations per second. 

In large distributed computing enterprises, it has 
been recognized that end-to-end QoS requires that QoS 
be integrated within a general resource management 
framework. This is the goal of the Global Resource 
Management project [4] which plans to  support com- 
mand, control, communications, and intelligence ( C31) 
applications, in addition to multimedia applications. 
The ERDoS project (End-to-End Resource Manage- 
ment for Distributed Systems) [3] is developing an in- 
frastructure to  map end-to-end, application-level QoS 
specifications to  middleware-, OS-, and network-level 
QoS specifications; allocate and schedule computing, 
communication and storage resources to applications; 
and appropriately handle QoS violations. 

This position paper presents Quaiis, the quality of 
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service component for the Globus Metacomputing sys- 
tem [6]. We present the Qualis architecture, how it 
is integrated into the Globus architecture, and how it 
addresses QoS in a metacomputing environment. 

2 The Qualis Architecture 

A guiding principle in the implementation of QoS for 
Globus was not to  build a single, unique QoS tool, but 
to build an infrastructure where lower-level QoS mech- 
anisms can be integrated and debugged, thereby allow- 
ing higher-level QoS tools and functionality to be built 
and evaluated. Since Nexus [7] is the communication 
and process control workhorse of Globus, it is clear that 
implementing QoS for Globus meant implementing QoS 
for Nexus. Hence, we chose to implement QoS for rele- 
vant Nexus abstractions. The abstractions we chose are 
(1) processes, (2) threads, (3) memory, and (4) commu- 
nication startpoints and endpoints which are used for 
asynchronous Remote Service Requests (RSRs). These 
are the QoS-able objects of Qualis. While Nexus does 
not actually have a separate abstraction for memory, 
it is not inconsistent with the Nexus model and will be 
useful since it will allow a coordination of buffer man- 
agement along with other forms of QoS services. 

For Nexus, a process involves an address space on 
some processor that could be a uniprocessor, a shared- 
memory machine, or one node in a distributed-memory 
machine. Threads lives within an address space and 
synchronize in the usual manner with mutexs and con- 
dition variables. Communication via RSRs is done be- 
tween a startpoint that is bound to an endpoint. A con- 
text may have an arbitrary number of start/endpoints. 
Startpoints (but not endpoints) can be freely passed 
among processes. One or more threaded or non- 
threaded handlers are associated with an endpoint. An 
RSR is initiated with a startpoint, handler id, and 
a data buffer. The data buffer is then delivered to 
the context with bound endpoint and passed to the 
handler. RSRs are supported by a variety of proto- 
col modules that utilize, for example, TCP (Transmis- 
sion Control Protocol), UDP (User Datagram Proto- 
col), MPL (the IBM Message Passing Layer), NX (the 
Intel message-passing library), or shared-memory. A 
single context can use multiple modules depending on 
which one is best for the target endpoint. This ap- 
proach can be used to support traditional message- 
passing, synchronous remote procedure call, distributed 
shared memory, streams, multicast, and other commu- 
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Figure 1: The Qualis Architecture. 

nication and control models. 
The Qualis architecture is shown in Figure 1. 

Nexus registers a process, thread, or bound start- 
point/endpoint with QosLib whenever they are created 
as part of normal operation. They are deregistered 
when they are destroyed. Nexus applications can spec- 
ify the QoS and callback handler associated with QoS- 
able objects. When this association is made, QosLib 
passes the information to QosMan which does local ad- 
mission control and monitoring. If the relevant QoS 
mechanism requires root privilege, QosMan will send 
an RPC to QosPriw which does the privileged oper- 
ation. (Modularizing privileged operations and using 
RPC (rather than Nexus remote service requests) was 
done so that only a relatively small amount of code us- 
ing a more familiar (and perhaps more trusted) commu- 
nication mechanism would be needed, thereby mitigat- 
ing any need for verification by system administrators.) 
If QosMan detects a QoS violation, an RSR is sent to 
the application’s callback handler. 

Qualis is currently integrated with two low-level 
QoS mechanisms: the POSIX Real-time Extensions [9] 
and RSVP [2]. The POSIX Real-time Extensions are 
used to  control the priority of processes and threads and 
to lock-down pages of memory. Currently process and 
thread &OS is simply specified as a priority by the local 
QosMan. Admission control for processes can be done 
by comparing the current load with the anticipated load 
of another process with the requested priority. Admis- 
sion control for threads is done in a similar manner 
but can be complicated by the OS’s thread scheduling 
model. 

QoS for startpoints/endpoints is currently based 
only on RSVP. While RSVP supports both TCP and 
UDP, including multicast, only the Nexus TCP pro- 



tocol module has been integrated into Qualis at this 
time. After the startpoint has been bound to the end- 
point, the application has specified the RSVP Rspec 
and Tspec, and the socket connection has been made, 
then the RSVP signaling protocol is initiated. If the 
bandwidth is available, RSVP returns a reservation 
confirmation. The Alternative Queuing (ALTQ) Class- 
Based Queuing package [5] polices traffic and provides 
static admission control. We currently have no mea- 
surement based admission control (MBAC) that would 
provide better utilization of the link. 

We have built a wide area testbed over CAIRN (Col- 
laborative Advanced Interagency R,esearch Network) 
using Integrated Services capable routers and hosts. 
The routers were constructed using IBM PC compati- 
ble machines running FreeBSD 2.2.X with a quad fast 
ethernet network adapter and the ALTQ package which 
utilizes the packet scheduler developed at LBNL, UCL, 
and Sun Microsystems. Our end hosts are Sun Ultra 1 
workstations running the Sun Integrated Services pack- 
age. A network of two routers and three end hosts are 
located at both IS1 and ANL and connected by the 
CAIRN research network. 

This basic infrastructure allows a number of issues 
to  be investigated. &OS mapping from higher level spec- 
ifications that are related to application behavior, such 
as method invocations per second, to  lower level sys- 
tem QoS primitives is important but difficult. Any QoS 
mechanism entails some overhead and, hence, implies 
some minimum granularity that can realize a net gain 
in performance. For threaded RSR. handlers; it may be 
necessary to specify QoS prior to creation rather than 
after. More effective monitoring and policing mecha- 
nisms need to  be in place such that applications can 
adapt when necessary in a timely fashion. True end-to- 
end, application-level QoS will require taking network, 
thread, process and application behavior into account 
together as a whole. Better overall performance may 
be possible if multiple QosMans negotiate among them- 
selves to maintain global or distributed QoS properties. 

Using the wide area testbed described above, the 
Globus/Qualis projects are currently performing a 
number of experiments including basic RSVP mi- 
crobenchniarks and instrumented applications to evalu- 
ate the performance and overhead of these QoS mecha- 
nisms. We are also investigating the design of QoS- 
aware resource brokers and schedulers that interact 
with the Metacomputing Directory Service and other 
Globus services. 
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