
Qualis: the Quality of Service Component for
the Globus Metacomputing System

Craig A. Lee
James Stepanek
B. Scott Michel

Computer Science and Technology
The Aerospace Corporation
El Segundo, CA 90245-4691

{lee,stepanek,scottm}@aero.org

Ian Foster
Mathematical and Computer Sciences

Argonne National Laboratory
Argonne, IL 60439
foster@mcs.anl .gov

1 Introduction

General computing over a widely distributed set of het-
erogeneous machines - typically called metacomputing
- offers definite advantages. In addition to allowing a
single application to bring together different types of
resources, such as specialized data sources, data bases,
and visualization systems, it allows an application to
acquire and utilize many different machines to attain a
level of compute power that is not possible any other
way. It may also be more cost-effective to aggregate
several machines over a network on a per-need basis
rather than acquire and maintain one large machine.

The performance of metacomputing systems, how-
ever, can be highly dependent on the available net-
work bandwidth and latencies. While performance can
be improved by designing applications to adapt to the
available bandwidth and tolerate latencies, the notion
of quality of service (QoS) for metacomputing is very
important. However, QoS in a metacomputing envi-
ronment has a broader scope than in just a networking
environment.

Much work has been done on how to provide QoS in
networks. The literature has investigated both connec-
tionless [l] and connection-oriented [8] networks, result-
ing in an extremely large archive of results. Less thor-
oughly investigated, however, are the problems that
arise in providing end-to-end QoS to large applications.
The exception here, of course, is network-based multi-
media, such as the popular MBone-based tools [lo], in
which it is paramount to assure that the required QoS
can be provided from a source - typically a stream-
ing video or audio source - to one or more destina-

Carl Kesselman
Robert Lindell

Soonwook Hwang
Joseph Bannister

Information Sciences Institute
University of Southern California
Marina del Rey, CA 90292-6695

{ carl,lindell,hwangsw joseph}@isi.edu

Alain Roy
Department of Computer Science

University of Chicago
Chicago, IL 60637

alain@cs .uchicago .edu

tions. The service model for these tools tends to be
an isochronous bit rate with minimal delay jitter and
low packet loss. We anticipate that metacomputing
will need a substantially different service model for the
non-visualization applications.

QoS specification and management can be imple-
mented at different levels of abstraction. The Inte-
grated Services Architecture, which includes the Reser-
vation Protocol [a] (RSVP), serves as Qualis’ basic
mechanism for QoS signaling protocol and traffic man-
agement. This is an example of a low-level QoS mecha-
nism that allows reservations to be made on a network
for a flow between a sender and a receiver. Quality of
Service for CORBA Objects (QUO) [ll] is an example
of high-level QoS that augments the CORBA Interface
Definition Language with a QoS Definition Language
(QDL) that allows specification of QoS in terms of ob-
ject behavior, e.g., method invocations per second.

In large distributed computing enterprises, it has
been recognized that end-to-end QoS requires that QoS
be integrated within a general resource management
framework. This is the goal of the Global Resource
Management project [4] which plans to support com-
mand, control, communications, and intelligence (C31)
applications, in addition to multimedia applications.
The ERDoS project (End-to-End Resource Manage-
ment for Distributed Systems) [3] is developing an in-
frastructure to map end-to-end, application-level QoS
specifications to middleware-, OS-, and network-level
QoS specifications; allocate and schedule computing,
communication and storage resources to applications;
and appropriately handle QoS violations.

This position paper presents Quaiis, the quality of

0-7803-4482-0/98/$10.00 0 1998 IEEE 140

mailto:lee,stepanek,scottm}@aero.org
mailto:joseph}@isi.edu

service component for the Globus Metacomputing sys-
tem [6]. We present the Qualis architecture, how it
is integrated into the Globus architecture, and how it
addresses QoS in a metacomputing environment.

2 The Qualis Architecture

A guiding principle in the implementation of QoS for
Globus was not to build a single, unique QoS tool, but
to build an infrastructure where lower-level QoS mech-
anisms can be integrated and debugged, thereby allow-
ing higher-level QoS tools and functionality to be built
and evaluated. Since Nexus [7] is the communication
and process control workhorse of Globus, it is clear that
implementing QoS for Globus meant implementing QoS
for Nexus. Hence, we chose to implement QoS for rele-
vant Nexus abstractions. The abstractions we chose are
(1) processes, (2) threads, (3) memory, and (4) commu-
nication startpoints and endpoints which are used for
asynchronous Remote Service Requests (RSRs). These
are the QoS-able objects of Qualis. While Nexus does
not actually have a separate abstraction for memory,
it is not inconsistent with the Nexus model and will be
useful since it will allow a coordination of buffer man-
agement along with other forms of QoS services.

For Nexus, a process involves an address space on
some processor that could be a uniprocessor, a shared-
memory machine, or one node in a distributed-memory
machine. Threads lives within an address space and
synchronize in the usual manner with mutexs and con-
dition variables. Communication via RSRs is done be-
tween a startpoint that is bound to an endpoint. A con-
text may have an arbitrary number of start/endpoints.
Startpoints (but not endpoints) can be freely passed
among processes. One or more threaded or non-
threaded handlers are associated with an endpoint. An
RSR is initiated with a startpoint, handler id, and
a data buffer. The data buffer is then delivered to
the context with bound endpoint and passed to the
handler. RSRs are supported by a variety of proto-
col modules that utilize, for example, TCP (Transmis-
sion Control Protocol), UDP (User Datagram Proto-
col), MPL (the IBM Message Passing Layer), NX (the
Intel message-passing library), or shared-memory. A
single context can use multiple modules depending on
which one is best for the target endpoint. This ap-
proach can be used to support traditional message-
passing, synchronous remote procedure call, distributed
shared memory, streams, multicast, and other commu-

~

141

ResourcdQos Spec RSRs
Nexus calls 1 1 zs /NotificationRSRs

Admission Control Privileged
Basic monitoring Operations
Notification

RegistrationtDeregiation
of Nexus abstractions

Figure 1: The Qualis Architecture.

nication and control models.
The Qualis architecture is shown in Figure 1.

Nexus registers a process, thread, or bound start-
point/endpoint with QosLib whenever they are created
as part of normal operation. They are deregistered
when they are destroyed. Nexus applications can spec-
ify the QoS and callback handler associated with QoS-
able objects. When this association is made, QosLib
passes the information to QosMan which does local ad-
mission control and monitoring. If the relevant QoS
mechanism requires root privilege, QosMan will send
an RPC to QosPriw which does the privileged oper-
ation. (Modularizing privileged operations and using
RPC (rather than Nexus remote service requests) was
done so that only a relatively small amount of code us-
ing a more familiar (and perhaps more trusted) commu-
nication mechanism would be needed, thereby mitigat-
ing any need for verification by system administrators.)
If QosMan detects a QoS violation, an RSR is sent to
the application’s callback handler.

Qualis is currently integrated with two low-level
QoS mechanisms: the POSIX Real-time Extensions [9]
and RSVP [2]. The POSIX Real-time Extensions are
used to control the priority of processes and threads and
to lock-down pages of memory. Currently process and
thread &OS is simply specified as a priority by the local
QosMan. Admission control for processes can be done
by comparing the current load with the anticipated load
of another process with the requested priority. Admis-
sion control for threads is done in a similar manner
but can be complicated by the OS’s thread scheduling
model.

QoS for startpoints/endpoints is currently based
only on RSVP. While RSVP supports both TCP and
UDP, including multicast, only the Nexus TCP pro-

tocol module has been integrated into Qualis at this
time. After the startpoint has been bound to the end-
point, the application has specified the RSVP Rspec
and Tspec, and the socket connection has been made,
then the RSVP signaling protocol is initiated. If the
bandwidth is available, RSVP returns a reservation
confirmation. The Alternative Queuing (ALTQ) Class-
Based Queuing package [5] polices traffic and provides
static admission control. We currently have no mea-
surement based admission control (MBAC) that would
provide better utilization of the link.

We have built a wide area testbed over CAIRN (Col-
laborative Advanced Interagency R,esearch Network)
using Integrated Services capable routers and hosts.
The routers were constructed using IBM PC compati-
ble machines running FreeBSD 2.2.X with a quad fast
ethernet network adapter and the ALTQ package which
utilizes the packet scheduler developed at LBNL, UCL,
and Sun Microsystems. Our end hosts are Sun Ultra 1
workstations running the Sun Integrated Services pack-
age. A network of two routers and three end hosts are
located at both IS1 and ANL and connected by the
CAIRN research network.

This basic infrastructure allows a number of issues
to be investigated. &OS mapping from higher level spec-
ifications that are related to application behavior, such
as method invocations per second, to lower level sys-
tem QoS primitives is important but difficult. Any QoS
mechanism entails some overhead and, hence, implies
some minimum granularity that can realize a net gain
in performance. For threaded RSR. handlers; it may be
necessary to specify QoS prior to creation rather than
after. More effective monitoring and policing mecha-
nisms need to be in place such that applications can
adapt when necessary in a timely fashion. True end-to-
end, application-level QoS will require taking network,
thread, process and application behavior into account
together as a whole. Better overall performance may
be possible if multiple QosMans negotiate among them-
selves to maintain global or distributed QoS properties.

Using the wide area testbed described above, the
Globus/Qualis projects are currently performing a
number of experiments including basic RSVP mi-
crobenchniarks and instrumented applications to evalu-
ate the performance and overhead of these QoS mecha-
nisms. We are also investigating the design of QoS-
aware resource brokers and schedulers that interact
with the Metacomputing Directory Service and other
Globus services.

References

R. Braden, D. Clark, and S. Shenker. Integrated
services in the internet architecture: An overview.
1994. RFC 1633.

R. Braden, L. Zhang, S. Berson, S. Herzog,
and S. Jamin. Resource reservation proto-
col (RSVP) - version 1 functional specification.
Technical report, USC Information Sciences In-
stitute, September 1997. Proposed Standard,
http://www.isi.edu/div7/rsvp/pub.html.

S. Chatterjee, B. Sabata, and J. Sydir. End-to-
end resource management for distributed systems.
1998. http://www.crg.sri.com/projects/erdos/in-
dex.htm1.

M. Davis and J. Sydir. Position paper: Rcsource
management for complex distributed systems. In
Second International Workshop on Object-oriented
Real-time Dependable Systems, 1996.

S. Floyd and V. Jacobson. Link-sharing and
resource management models for packet net-
works. IEEE/ACM Transactions on Networking,
3(4) ~365-386, August 1995.

I. Foster and C. Kesselman. Globus: A metacom-
puting infrastructure toolkit. Intl. J . Supercom-
puting Applications, 11(2): 115-128, 1997.

I. Foster, C. Kesselman, and S. Tuecke. The Nexus
approach to integrating multithreading and com-
munication. J . Parallel and Distributed Comput-
ing, 37:70-82, 1996.

M. Garrett. ATM service architecture: From ap-
plications to scheduling. 1994. ATM Forum Con-
tribution 94-0846 TM SWG.

IEEE. P1003.4 Realtime extensions for portable
operating systems. Technical report, IEEE,
1995. Standard, http://standards.ieee.org/cata-
log/ posix. h t ml .

S. McCanne and V. Jacobson. vic: a flexible frame-
work for for packet video. In Proc. ACM Multime-
dia '95, 1995.

J.A. Zinky, D.E. Bakken, and R.E. Schantz. Ar-
chitectural support of quality of service. Theory
and Practice of Object Systems, 3(1), 1997.

142

http://www.isi.edu/div7/rsvp/pub.html
http://www.crg.sri.com/projects/erdos/in
http://standards.ieee.org/cata

