
Performance Analysis of the OGSA-DAI Software

Mike Jackson, Mario Antonioletti, Neil Chue Hong, Alastair Hume, Amy Krause, Tom Sugden

and Martin Westhead

EPCC, University of Edinburgh, James Clerk Maxwell Building, Mayfield Road, Edinburgh EH9
3JZ, UK

Abstract

This paper describes the experiences of the OGSA-DAI team in profiling and benchmarking
components of the OGSA-DAI database access middleware built using the Open Grid Services
Infrastructure and the emerging Database Access and Integration Services Global Grid Forum
recommendations. The profiling approach and the tools used are described. A number of areas of
concern are then analysed in detail. In particular, the analysis focuses on running database queries,
creating Document Object Model objects, utilising Globus Toolkit Grid Security Infrastructure
mechanisms, validating XML against XML Schema and inter-dependencies between third-party
software used within OGSA-DAI.

1. Introduction
The Open Grid Services Architecture – Data
Access and Integration (OGSA-DAI) project [1]
started in February 2002. The first production
release – Release 3.0 – was made in July 2003
shortly after the Globus Toolkit 3.0 (GT3)
release. Code development has been undertaken
by two teams, at EPCC and IBM UK, with
design input coming from the other project
members.

The main goal of OGSA-DAI is to serve the
UK e-Science community by providing
middleware that allows controlled exposure of
data resources to Grid environments. This then
provides the base services required by higher-
level data integration services, e.g. Distributed
Query Processing (DQP) [2] and Data
Federation services.

The OGSA-DAI project continues to
develop its software – improving performance,
providing support for additional data resources,
tackling data integration issues and moving
towards inter-operability with developing Web
and Grid standards.

1.1 OGSA-DAI and the Grid Data Service

Currently, OGSA-DAI extends the Open Grid
Services Infrastructure (OGSI) [3] by defining
portTypes which are used to construct a set of
base data services that provide uniform access
to databases. The key service is the Grid Data
Service (GDS). The GDS represents a database
access end-point for a client and maintains the
client’s session with that database. Clients
invoke database functionality by submitting
GDS-Perform documents – XML documents

which specify the actions a client wants
performed on a database (e.g. queries or
updates). The implementation of a GDS is
embodied in the GDS Engine which parses and
executes GDS-Perform documents, manages
database connections via third-party drivers, and
constructs GDS-Response documents – XML
documents holding the results of the client’s
actions (e.g. query results or update counts).

1.2 OGSA-DAI and Performance

One of the challenges faced by the OGSA-DAI
project has been to produce software which
efficiently handles database-related requests.
Application benchmarking [4][5] has already
been reported by other groups. This paper
focuses on profiling undertaken by the OGSA-
DAI team itself. In contrast to the work of
[4][5], which focuses on data access scenarios
and scalability from an applications point of
view, the profiling described in paper was
undertaken with the aim of tuning the
performance time of OGSA-DAI – identifying
limitations and bottlenecks in the
implementation – rather than with the aim of
identifying fundamental architectural and design
flaws. Both methodology and results may be
useful to other groups undertaking similar types
of work.

2. Profiling OGSA-DAI
The GDS is the service through which clients
access a database. Profiling activity therefore
focused on this service. In particular, the
Perform operation through which GDS-Perform
documents are submitted by and GDS-Response

documents returned to clients. The following
profiling was undertaken:

• Identifying bottlenecks in the
execution of GDS-Perform documents.

• Identifying overheads incurred by
security.

• Examining the validation of GDS-
Perform documents against their XML
Schema.

OGSA-DAI Release 3.0.2 was profiled. This
was deployed on an Apache Tomcat 4.1.29 /
Globus Toolkit 3.0.2 (GT3) stack running on a
Redhat Linux 9 distribution on a dual 2.4 GHz
Pentium IV Xeon processor Intel machine with
2 Gb of memory. A 10,000 row OGSA-DAI
littleblackbook MySQL database table –
distributed with OGSA-DAI – was used, with
the MySQL Connector/J 2.0.14 driver [6]
managing OGSA-DAI-MySQL
communications. During profiling, Tomcat was
shut-down and re-started between repeated
iterations to minimise the risk of caching effects
within GT3 and OGSA-DAI.

2.1 Profiling Tools

A number of useful profiling tools were used:
• System.currentTimeMillis – a

Java method that returns the current
system time which can then be output
to a console or a file.

• Apache Log4J [7] – a collection of
classes for software logging. Logging
statements, which are used to log
messages to a file, can be added to a
program. A developer can assign
different priority levels to messages.
Log messages can include elapsed
execution time in milli-seconds,
priority level, the name of class from
which the message originates, the
thread number and any developer-
specific information.

• Borland Optimizeit [8] and EJ-
Enterprises JProfiler [9] – method call
visualisers which monitor CPU load
and memory usage. These can be
hooked into Tomcat and support
server-side performance analysis.
Optimizeit records method calls which
can be visualised later and visualises
threads in separate displays. JProfiler,
in contrast, visualises in real time and
has an integrated thread display.

2.2 Analysis Method

The profiling method consisted of submitting
GDS-Perform documents to a GDS and then

analysing method call performance using both
Optimizeit and JProfiler to identify potential
bottlenecks and areas for further investigation.
Apache Log4J statements were then added to
the appropriate OGSA-DAI code so that
information suitable for analysis could be
gathered over repeated runs. These were
assigned a high priority level and used a
standard message prefix to facilitate their
extraction from log files. This method relied
upon the team having an intuition as to where
potential bottlenecks might be occurring – the
team considered methods relating to security or
XML document validation and manipulation to
be of particular concern.

3. Profiling the GDS::Perform
operation – Server-side Perspective
The GDS::Perform operation was profiled by
submitting the simplest possible GDS-Perform
document – one requesting execution of an N-
row SQL query “SELECT * FROM
littleblackbook WHERE id < N”
where N = [100 | 250 | 500 | 750 | 1000 | 2500 |
5000 | 7500 | 10000]. The times taken to
complete the following activities were recorded:

• Executing the GDS-Perform document
– from the moment it is received from
the GT3 infrastructure to the moment a
GDS-Response document is handed
over to GT3 to return to the client.

• Validating and parsing the GDS-
Perform document.

• Loading a database driver, connecting
to the database and configuring the
connection.

• Using the driver to execute the query.
• Extracting the results from the database

via the driver.
• Closing the database connection.
• Converting the results into a

WebRowSet [10] XML representation
and then building a GDS-Response
document holding this WebRowSet
representation.

Profiling revealed that:
• 90% of the time taken by the Perform

operation was spent within the GDS
Engine.

• Validating a GDS-Perform document
against its XML Schema took an
average of 140 ms irrespective of the
number of rows.

• Initialising the GDS Engine, loading a
database driver, connecting to the
database, running the query, and

extracting the results from the database
took an average time of approximately
7 ms irrespective of number of rows.

• Post-operation clean-up within the
GDS increased from 4 ms to 100 ms as
the number of rows in the query
increased. The reason for this is not
known at this time.

Red lines indicate the times from the original
analysis. Blue lines show the times recorded
using a refactored GDS Engine adopting the
performance enhancement of section 4.

Figure 1: Total
GridDataService::Perform execution time

and GDS Engine processing time per result
row

Of most concern, however, was the fact that

execution time degraded exponentially in
relation to the number of rows in the query as
shown in Figure 1. Studying the code invoked
during the Perform operation revealed a number
of suspects:

1. Code that prettifies the WebRowSet
documents to enhance their readability
– clearly this should not be the
responsibility of a GDS.

2. Inefficient implementation structures
including: numerous nested-ifs for
handling database product-specific
conditions and the distinction between
database queries and database updates,
case statements with large numbers of

conditions, if statements within while
loops, repeated array accesses and list
size checks within loops.

3. Creation of multiple threads within the
GDS Engine and the blocking of
threads.

4. Java StringBuffer to String
conversion.

5. Building XML documents using
Document Object Model (DOM) [11]
objects.

Addressing points 1, 2 and 4 yielded only
small constant improvements in execution time.
To avoid diving into multi-threaded
management issues it was decided to focus on 5.
This revealed a significant overhead, the cause
and solution of which are discussed in section 4.

The analysis was performed again, but using
a version of the GDS which adopted the
solution of section 4. The results are shown in
the graphs of Figure 1. The refactoring yielded a
significant improvement in the performance of
the Perform operation.

4. A DOM Deficiency
When building WebRowSet representations of
query results, a DOM object is constructed. As
each row is extracted from the database driver it
is converted to XML and added to this DOM
object. OGSA-DAI, like GT3, uses the Apache
Xerces 2.4 [12] implementation of DOM
(which, in turn, implements the Java 1.4
org.w3c.dom API). A performance problem
arose from the use of a method, appendData,
on the Xerces implementation of an
org.w3c.dom.Text class, which appends a
String to a DOM object. The first graph of
Figure 2 plots the following:

• Time to append N Strings to a
DOM object using the
Text.appendData method.

• Time to append N Strings to a
StringBuffer, using its append
method, convert the StringBuffer
to a String, and then append this
String to a DOM object using a
single Text.appendData call.

The graph shows that reducing reliance on
the Text.appendData method leads to a
significant reduction in execution time. The
second graph of Figure 2 shows that the
StringBuffer.append method does
degrade as the number of Strings in the
StringBuffer increases, but this
degradation is both shallow and linear.

The upper graph shows the time taken to
construct a DOM object consisting of a given
number of Strings using repeated calls of
Text.appendData compared to the use of a
StringBuffer to collect together Strings
before a single invocation of
Text.appendData. The lower graph shows
the performance degradation of using a
StringBuffer to append Strings.

Figure 2: Appending DOM Objects and
using StringBuffer

It should be noted however, that this time

reduction comes at the expense of additional
program logic. Checks must be made to ensure
that the contents of the StringBuffer are
flushed into the DOM object before any other
object tries to access the DOM object. If this is
not done then an incorrect view of the document
being modelled may result. If such access could
be frequent then using a StringBuffer and
flushing regularly using Text.appendData
may actually be less efficient than solely using
Text.appendData. The solution to use
should therefore be made on an application-
specific case-by-case basis.

5. Profiling the GDS::Perform
operation – Client-side Perspective
The GDS::Perform operation was profiled from
a client’s perspective by using
System.getTimeMillis statements to

time the invocation of the Perform operation by
a client. A client which connected directly to the
littleblackbook database via JDBC and
using the MySQL Connector/J 2.0.14 driver was
also profiled. In this client, the time was
calculated from prior to the connection to the
database to when the connection was closed
after retrieving the query results.

Figure 3: Comparing a direct JDBC

connection (red) to OGSA-DAI (blue)

Figure 3 shows the results. The fact that

OGSA-DAI incurs a higher round-trip time than
JDBC is not a surprise, since OGSA-DAI also
incurs overheads relating to the processing of
the GDS-Perform document and building the
GDS-Response documents in addition to GT3
and Tomcat overheads. However, within
OGSA-DAI performance increases in relation to
the number of rows at a steeper rate than the
performance increase observed for a direct
JDBC connection. It is likely that this is due to
the overhead of processing and passing around
the WebRowSet representation of the query
results within OGSA-DAI. This is of concern if
OGSA-DAI is to be a credible alternative to
direct database connection solutions.

6. Security
This section describes investigations into the
overheads incurred when enforcing various
security configurations on the GDS. Four types
of GDS were tested:

• GDS with no security (None).
• GDS which enforces GSI XML

Signature (Sig).
• GDS which enforces GSI Secure

Conversation with Message Signing
(ConS).

• GDS which enforces GSI Secure
Conversation with Message Encryption
(ConE).

Profiling was performed from the
perspective of the client and the server.

6.1 Client-side

At the client-side, three calls to the GDS
FindServiceData operation were made followed
by a call to Perform. This was done to identify
different overheads in setting up security
contexts between a client and server
(establishing a security context is a
characteristic of GSI Secure Conversation).
Durations were calculated for:

• Calls to GT3 GSI modules to create a
credential for the client based upon a
user certificate and key.

• Each call to FindServiceData and
Perform.

Security from the client-side showing the
overheads (reading from bottom of the graph to
the top) for creating/initialising a client
credential, three consecutive calls to
FindServiceData and a call to Perform.

Figure 4: Security from the client-side

From the results presented in Figure 4 the

following points can be observed:
• Credential initialisation has a constant

overhead of 650 ms regardless of
security type.

• All calls to secure GDSs incur a longer
round-trip time.

• The second and third calls to
FindServiceData and the call to
Perform are less for GSI Secure
Conversation than for GSI XML
Signature. This is unsurprising as GSI
Secure Conversation expects a shared
security context to exist between the
client and the service. In contrast, no
such context is present for GSI XML
Signature.

• Use of a shared context by GSI Secure
Conversation explains why the initial
FindServiceData call is more costly for
GSI Secure Conversation that that for

GSI XML Signature. However, if one
were to make numerous calls then this
initial overhead may be recouped from
the savings accrued from subsequent
secure operation calls.

• Part of the overhead for the initial
FindServiceData calls also includes
GT3 initialising the GDS – hence the
longer duration even when no security
is present.

• For large queries/complex GDS-
Perform documents, the security
overhead would be subsumed within
the cost of executing the GDS-Perform
document as a whole.

6.2 Server-side

The following areas of the implementation of
the GDS Perform operation were timed:

• Accessing client credentials using the
GT3 infrastructure.

• Extracting the client’s distinguished
name – via GT3 infrastructure – if no
credential is provided by the client or
no distinguished name accessed from
the credential.

• Mapping a client’s distinguished name
to a database user name and password.

• JDBC calls to connect to the database
using this user name and password.

Figure 5 shows the security-related overheads
in relation to the total time required to complete
the Perform operation. The security-related
overheads are also shown in more detail. The
overhead for non-security related activities is
constant regardless of the security enforced by
the GDS. However, credential extraction incurs
a greater overhead if no security is present
(12ms) – since a number of security-related
checks and attempts to get the credentials are
made and fail – compared to when security is
present (1-2ms).

Figure 6 shows that security has no effect
when connecting to the database. Costs incurred
in mapping a client’s distinguished name to a
database user name and password, connecting to
the database and other overheads are relatively
constant.

Again, this demonstrates that security
overheads are of the order of a few milli-
seconds and therefore do not substantially
degrade OGSA-DAI performance.

7. Validating Against XML Schema
As described in section 3, validating the

GDS-Perform document against its XML
Schema takes approximately 140 ms. This

validation is performed by the parse method
of the Xerces 2.4 class
org.apache.xerces.parser.DOMPars
er. During initial analysis, however, a
validation time of 300 ms was evident.
Investigating this discrepancy revealed a
dependency between the above
DOMParser.parse method and the JDBC
java.sql.DriverManager.getConnec
tion method.

The upper graph shows the overheads for
security-related as a proportion of the time
taken to complete the GDS::Perform operation.
The lower graph shows the overheads for
running a security check and getting the client
credentials (or, for the case of None, failing to
get the credentials)

Figure 5: Security from the server-side

Security from the server-side showing the
overheads (reading from bottom of the graph to
the top) for mapping a user credential to a
database user name and password, other
connection overheads and creating a database
connection.
Figure 6: Security and database connection

The results, shown in Figure 7, reveal that

when a call to

DriverManager.getConnection occurs
after a call to DOMParser.parse to validate
a GDS-Perform document then the time to parse
the document takes 300 ms. However if
DriverManager.getConnection has
already been invoked prior to the call to
DOMParser.parse then the validation only
takes 140 ms. This implies a dependency
between the implementation of
java.sql.DriverManager, the MySQL
Connector/J 2.0.14 driver (invoked by
DriverManager) or Xerces
DOMParser.parse. The exact nature of this
dependency is unknown at present but is most
likely to be the loading of some shared class.

Average, over ten runs with ten GDSs, of
durations of calls to
DriverManager.getConnection
(dashed) and DOMParser.parse (solid)
where getConnection is called before
(blue) or after (red) parse.

Figure 7: DOMParser.parse and
DriverManager.getConnection

dependency

7.1 Another Implicit Security Dependency

Figure 8: Security and DOMParser.parse

duration

Figure 8 reveals another dependency

involving DOMParser.parse. Provided that
there is no prior invocation of
DriverManager.getConnection then
the invocation of DOMParser.parse to parse

a GDS-Perform document takes on average 300
ms if no security is applied while it only takes
140 ms if security is applied. This is due to the
fact that GT3 uses server-side XML files to
specify security configurations and these are
loaded and parsed when secure services are first
created – the classes for parsing XML files have
therefore already been loaded when
DOMParser.parse is called to validate a
GDS-Perform document.

8. Conclusions
This paper has described the experiences of the
OGSA-DAI team undertaking a performance
tuning exercise of OGSA-DAI. OGSA-DAI
offers significant functionality over direct
connection database technologies such as
JDBC, for example data transformation,
compression and delivery. However, it is vital
that when it comes to standard database access
scenarios that are supported by existing direct
access technologies that OGSA-DAI should be
able to compete in terms of performance. The
team’s experiences raise a number of issues:

• Graphical profilers are useful for
identifying potential performance
suspects while Log4J statements can
support the collection of repeated data
for formal analysis.

• Performance hits can occur in
unsuspected places, for example the
Text.appendData operation.
Third-party code should be subject to
performance testing before inclusion in
performance-critical software.

• When relying upon software from
multiple third-parties, unanticipated
dependencies and performance-related
behaviours may arise, often from the
loading of shared classes.

• Both OGSA-DAI and GT3.0.2 security
overheads were far less heavy than
expected indicating that secure client-
service communications are realisable
without a significant degradation of
performance – any performance
degradation is small compared to the
cost of executing application-specific
functionalities.

Directions for future investigation could
include:

• Performing an analysis of XML:DB-
related activities e.g. XPath and
XUpdate.

• Profiling performance using very large
data sets, especially retrieval of such
data sets.

• Investigating why cleaning up after a
query increases its duration gradually
in response to an increase in the
number of rows in a query result.

• Reducing where possible the overheads
within OGSA-DAI of constructing,
processing and transporting
WebRowSet representations of query
results.

• Investigating the inter-dependence of
Xerces and JDBC classes.

Acknowledgements
This work is supported by the UK e-Science
Grid Core Programme, whose support we are
pleased to acknowledge. We also gratefully
acknowledge the input of our past and present
partners and contributors to the OGSA-DAI
project including: IBM UK, University of
Manchester, University of Newcastle, Oracle
UK.

References
[1] OGSA-DAI Project. See

http://www.ogsadai.org.uk.
[2] DQP Project. See

http://www.ogsadai.org.uk/dqp.
[3] Tuecke, S., Czajkowski, K., Foster, I., Frey, J.,

Graham, S., Kesselman, C., Snelling, D.,
Vanderbilt, P. Open Grid Services Infrastructure
version 1.0 (Draft 33). Open Grid Services
Infrastructure WG, Global Grid Forum, June
27th 2003. See http://www.gridforum.org/ogsi-
wg/.

[4] Deelman, E., Singh, G., Atkinson, M.P.,
Chervenek, A., Chue Hong, N.P., Kesselman,
C., Patil, S., Pearlman, L., Sui, M-H., Grid-
Based Metadata Services. Submitted to 16th
International Conference on Scientific and
Statistical Database Management, June 2004.

[5] Kodeboyina, D., Plale, B., Experiences with
OGSA-DAI: Portlet Access and Benchmark.
Designing and Building Grid Services
Workshop, October 8th 2003.

[6] MySQL Database Driver. See
http://dev.mysql.com/downloads/connector/j/2.0
.html.

[7] Apache Log4J. See
http://jakarta.apache.org/log4j/.

[8] Borland Optimizeit. See
http://www.borland.com/.

[9] EJ-Enterprises JProfiler. See http://www.ej-
technologies.com/products/jprofiler/overview.ht
ml/.

[10] JSR 114: JDBC Rowset Implementations. See
http://www.jcp.org/en/jsr/detail?id=114/.

[11] W3C Document Object Model. See
http://www.w3.org/TR/DOM-Level-2-
Core/core.html/.

[12] Apache Xerces 2.4. See
http://xml.apache.org/xerces2-j/releases.html/.

	Abstract
	Introduction
	OGSA-DAI and the Grid Data Service
	OGSA-DAI and Performance

	Profiling OGSA-DAI
	Profiling Tools
	Analysis Method

	Profiling the GDS::Perform operation - Server-side Perspective
	A DOM Deficiency
	Profiling the GDS::Perform operation Client-side Perspective
	Security
	Client-side
	Server-side

	Validating Against XML Schema
	Another Implicit Security Dependency

	Conclusions
	Acknowledgements
	References

