
Protecting Application Developers – A Client Toolkit for OGSA-DAI

Tom Sugden, Alastair Hume, Mike Jackson, Mario Antonioletti,

Neil Chue Hong, Amy Krause and Martin Westhead
EPCC, University of Edinburgh, James Clerk Maxwell Building,

Mayfield Road, Edinburgh EH9 3JZ, UK.

Abstract

The OGSA-DAI project has developed a client toolkit for the OGSA-DAI middleware. This toolkit
comprises of a set of high-level APIs intended to protect application developers from changes in
Grid specifications that impact upon OGSA-DAI and remove the requirement to manipulate XML
documents either by hand or programmatically. In doing so, the client toolkit aims to improve the
usability and shorten the learning curve for developers wishing to write client applications that
utilize OGSA-DAI services. This paper describes the underlying motivation for the client toolkit,
provides an overview of certain aspects of its design, and presents a number of use-cases to
highlight the benefits that are offered.

1. Introduction
The Open Grid Services Architecture – Data
Access and Integration (OGSA-DAI) project [1]
began in February 2002 with the aim of
developing a component library for accessing
and manipulating data in a Grid for use by the
UK and international Grid community. This
component library was to provide the middle-
ware glue to interface existing databases and
other data resources and tools to each other in a
common way based on the Open Grid Services
Architecture (OGSA) [2].

The first production release – Release 3 –
was made in July 2003 shortly after the Globus
Toolkit 3.0 (GT3) [3] release. Code
development was undertaken by two teams, one
based at EPCC, the other at IBM UK, with
design input being provided by the other project
members. This release provided the base
services and functionality required to construct
higher-level data integration services, such as
OGSA-DQP [4]. The DAIT project is now
continuing to develop the OGSA-DAI software,
concentrating in particular on improving
performance and usability, tackling data
integration issues, and moving towards
compliance with developing standards.

1.1 Shifting Sands

Proposed specifications in the area of Web and
Grid services have been in a state of constant
flux for some time. OGSA-DAI must try to
evolve in tandem with these specifications,
complying with emerging standards once they
become stable, but balancing this with the desire
to provide backwards compatibility for the sake
of established users. OGSA-DAI must also

evolve in response to changes in the tooling
upon which it depends (most notably GT3) that
is itself in a state of evolution.

Small changes to specifications and tooling
can entail major alterations to the OGSA-DAI
code base. Whenever such changes take place,
there is a ripple effect propagating from
specification, to GT3, to OGSA-DAI, and up to
application developers who consequently must
alter their code to maintain consistency. Failure
to do so may result in applications that rely on
obsolete or unsupported versions of OGSA-DAI
and so are unable to exploit improvements or
inter-operate with higher-level services. In this
situation, there exists a risk that application
developers may stop using OGSA-DAI and seek
a more stable solution.

1.2 Potholes

The OGSA-DAI Grid Data Service (GDS)
supports a document interaction model whereby
clients express their data access and interaction
requirements via an XML document known as a
perform document. Whether created by hand or
programmatically, these documents can become
complex and prone to error, with misspellings,
invalid XML and semantically incorrect values
being introduced. Errors of these sorts can incur
costly implement-test-debug cycles for
application developers.

The results of an OGSA-DAI interaction are
often expressed in XML and this can require
cumbersome DOM manipulation in order to
process. These factors and the steep learning
curve caused by the dependence on various
different concepts, specifications, APIs and
tools may deter developers from adopting
OGSA-DAI at the outset.

2. The Client Toolkit
In order to address the problems discussed in
the previous section, a client toolkit has been
developed for OGSA-DAI. This consists of a
higher-level API designed to protect the
application developer from the effects of
changing standards and tooling, the risk of error
introduced by direct XML manipulation, and
the complexity of lower-level APIs. A
technology preview of the client toolkit was
included in OGSA-DAI R3.1 and the first
documented release with OGSA-DAI R4.

The client toolkit has three main aims:

• To define a clear and simple API built
around solid abstractions, such as the
registry, factory, GDS, and activity
framework.

• To minimize the specialist knowledge
and number of steps required to
retrieve results. Ideally the application
developer should not be exposed to
lower-level APIs such as GT3, Axis
[5], Xerces [6] and DOM [7].

• To protect the application developer
from future changes to OGSA-DAI
interfaces arising from changes to
specifications, XML Schema and GT3.

Developers of conventional non-Grid

database applications are able to make use of
standardised high-level APIs for accessing and
interacting with data. For relational databases,
the JDBC API for Java provides cross-DBMS
connectivity to a wide range of SQL databases,
and for XML databases, the XMLDB API
serves a similar purpose. Although OGSA-DAI
provides additional capabilities to these two
standards, such as data transformation and
delivery to a 3rd party, the client toolkit API has
been defined at a similar level of abstraction.
Furthermore, support for the standard JDBC and
XMLDB interfaces used for processing results,
the JDBC ResultSet and XMLDB ResourceSet,

has been integrated into the client toolkit. Figure
1 illustrates the layering of APIs and shows how
the client toolkit sits at a higher-level together
with the JDBC and XMLDB APIs, abstracting
away details of the lower-level APIs used for
interacting with grid services and processing
XML data.

Using the client toolkit, a developer can
construct objects to represent activities such as a
database query and a delivery method and
location. These objects can be linked together to
form a request that can be passed to an object
representing a GDS. Behind the scenes, the
client toolkit will compose the corresponding
perform document to express the query-and-
deliver request, removing one source of error,
then send it to the GDS. When the response
document is received, the client toolkit will
interpret it and extract the results that then
become available via simple access methods
and standardised interfaces, thus protecting the
developer from the complexities of the lower-
level APIs.

The client toolkit enables the application
developer to interact with OGSA-DAI services
at a level closer to their application-specific
goals. By avoiding altogether the low-level
details of using OGSA-DAI, the client toolkit
aims to yield a gentler learning curve for new
adopters.

2.1 OGSA-DAI Interactions

This sub-section provides an overview of a
typical OGSA-DAI interaction. The concepts
and stages involved in such an interaction have
guided the design of the client toolkit.

OGSA-DAI defines the following types of
grid service:

• DAI Service Group Registry
• Grid Data Service Factory
• Grid Data Service

A DAI Service Group Registry (DAISGR)
stores meta-data describing other OGSA-DAI

Client Toolkit JDBC XMLDB

AxisGlobus
Toolkit DOMXerces

OGSA-DAI Services

Higher-level
APIs

Lower-level
APIsClient

Machine

Service
Container

Figure 1: The Client Toolkit provides a higher-level API for interacting with OGSA-DAI services

services that clients may access and query. A
Grid Data Service Factory (GDSF) represents a
single logical data resource such as a relational
database. To access a data resource a client
must use the appropriate GDSF to create a Grid
Data Service (GDS). The GDS then facilitates
interactions with the data resource.

The stages involved in a typical OGSA-DAI
interaction are illustrated in Figure 2 and
summarised below:

1 The client queries a known DAISGR to

obtain details of a registered GDSF
representing a particular data resource.

2 Metadata is returned to the client describing
the capabilities of the GDSF and containing
a handle that can be used to access the
GDSF.

3 The client accesses the GDSF and instructs
it to create a new GDS that will be used by
the client for interacting with the data
resource.

4 The GDSF creates a new instance of a GDS
for the data resource that it represents.

5 The GDSF returns a handle to the client
that can be used for accessing the new
GDS.

6 The client accesses the GDS and sends a
request consisting of a sequence of one or
more activities to evaluate.

7 The GDS interprets the request and
evaluates the activities described by it. In
the case of a query activity, the GDS
interacts with the database.

8 The results of the activity evaluation are
sent back to the client in the response.

In some cases the client will already know
the handle of the GDSF they wish to use and so
stages 1 and 2 will be omitted. When the client
has no more requests to send to the GDS, a
destroy message is issued.

2.2 Services

The client toolkit provides interfaces to
represent the three OGSA-DAI service types
and a helper class named ServiceFetcher to
assist with instantiation. A simplified UML
class diagram is shown in Figure 3.

Using these service interfaces and the static
methods of ServiceFetcher, a client can access
DAISGR, locate GDSF, create and destroy GDS
and perform requests without needing to use the
Globus Toolkit APIs or perform any DOM
manipulation. The UML sequence diagram
shown in Figure 4 demonstrates a series of
typical client interactions.

Note that the metadata objects returned by
the listServices and getActivityMetaData
methods provide simple interfaces for accessing
information such as the service handle and
activities supported by a particular GDSF.
However, the definition of standards in the area
of metadata is outside the scope of the OGSA-
DAI project.

By using a helper class and factory method
to separate the construction of ServiceGroup-
Registry, GridDataServiceFactory and
GridDataService instances from their
implementations, the client toolkit protects the
client developer from changes to the
implementations and dependent technologies.

Database

Client
Grid Data
Service
(GDS)

DAI Service
Group

Registry
(DAISGR)

Grid Data
Service
Factory
(GDSF)

1. Query to locate GDSF

8. Response containing results2. Metadata describing GDSF

6. Request containing query

3.
 C

on
ta

ct
 G

D
S

F
an

d
re

qu
es

t n
ew

 G
D

S

4. Create new GDS

5.
 H

an
dl

e
fo

r n
ew

 G
D

S

7.
 Q

ue
ry

 e
va

lu
at

ed

Figure 2: Typical OGSA-DAI client-service interactions

+destroy()
+getHandle() : String

«interface»
GridService

+perform(in request : Request) : Response
+perform(in activity : Activity) : Response

«interface»
GridDataService

+createGridDataService() : GridDataService
+getActivityMetaData() : ActivityMetaData[]

«interface»
GridDataServiceFactory

+listServices() : GridServiceMetaData[]
+listServices(in type) : GridServiceMetaData[]

«interface»
ServiceGroupRegistry

«static» +getFactory(in handle : String) : GridDataServiceFactory
«static» +getRegistry(in handle : String) : ServiceGroupRegistry

ServiceFetcher

GridDataServiceImplGridDataServiceFactoryImplServiceGroupRegistryImpl

Client

«creates» «creates»

«creates»

Figure 3: Class diagram showing OGSA-DAI services and ServiceFetcher

listServices(factoryType)

:Client :ServiceFetcher

fac:GridDataServiceFactory

gds:GridDataService

getRegistry(handle)

reg:ServiceGroupRegistry
<<create>>

reg

metadata containing factory handles

getFactory(handle)

<<create>>

fac

createGridDataService

<<create>>

gds

process requests using gds

destroy

Figure 4: Sequence diagram demonstrating service access and creation

Activity

+SQLQueryActivity()
+SQLQueryActivity(in expression : String)
+getOutput() : ActivityOutput
+getResultSet() : ResultSet
+setExpression(in expression : String)

SQLQuery
+XSLTransform()
+XSLTransform(in transform : String, in data : ActivityOutput)
+getOutput() : ActivityOutput
+setInput(in data : ActivityOutput)
+setTransform(in transform : String)

XSLTransform

Request

+ActivityRequest()
+ActivityRequest(in activities : Activity[])
+addActivity(in activity)
+addActivities(in activities : Activity[])
+clear()

ActivityRequest

+getName() : String
+getBytes() : byte[]

ActivityOutput

Figure 5: Class diagram showing activities and activity request

query:SQLQuery tran:XSLTransform req:ActivityRequest :GridDataService:Client

setInput(output)

getOutput

addActivity(query)

addActivity(tran)

perform(req)

output

response

Connect
activities

Assemble
request

Figure 6: Sequence diagram demonstrating how to connect activities and assemble a request

2.3 Activities and Requests
The concept of an activity is central to OGSA-
DAI and the client toolkit. An activity dictates
an action to be performed the GDS. Broadly
speaking, activities fall into four categories –
access, update, transformation and delivery –
but the activity framework is an extensibility
point that enables OGSA-DAI service providers
to develop and deploy their own activities to
perform arbitrary tasks.

An activity can have multiple inputs and
outputs, and the output from one activity can be
connected to an input of another to form an
activity chain. In order to process a chain of
activities, the client toolkit provides an
ActivityRequest object that can be assembled
using the addActivity method before being sent
to the GridDataService perform method. The
UML class diagram in Figure 5 shows the
ActivityRequest class and two activity
implementations. The UML sequence diagram

in Figure 6 demonstrates how an SQLActivity
and an XSLTransform activity can be
constructed by the client, chained together so
that the output of the query will be transformed,
assembled into an ActivityRequest and then sent
to a GridDataService via the perform method.
Note from the class diagram that the
SQLActivity implementation also provides a
getResultSet method to access query results
using the standard java.sql.ResultSet interface.
This allows an OGSA-DAI client application to
process query results in the same manner as a
conventional non-Grid application.

OGSA-DAI R4 includes a large number of
useful activities for accessing and updating
relational and XML data, performing data
transformations and compressions, and
delivering data via various protocols. The client
toolkit enables developers to construct and
connect these activities programmatically in
order to achieve anything from a simple
database query to a complex distributed data
integration scenario with relative simplicity.

3. Use Cases
This section presents two use cases to illustrate
the difference between OGSA-DAI client
development with and without the client toolkit.
A simple metric of lines of code required when
limited to 80 characters in length has been used
to assess the usability benefits. The number of
import statements required has been used as
another measure of complexity.

3.2 Processing Query Result

This use case considers a client application that
must create a GDS, query a relational database
table, and display the first x entries. The
relational table has the following structure:

LittleBlackBook

PK ID

Name
Address
Phone

Figure 7: Table structure

The bar graph in Figure 8 shows the number

of lines of code and import statements required
to implement this client using the client toolkit
compared with using the lower-level APIs:

0

20

40

60

80

lines of code import statements

using client toolkit w ithout client toolkit

Figure 8: Processing query results with and

without the client toolkit

It can be seen the client toolkit has reduced
the number of lines of code required by almost
¾ from 62 to 16. The number of import
statements required has been reduced by a
similar factor, from 21 to 5. This is largely due
to the wrapping of DOM and ExtensibilityType
(an OGSI class) manipulation, and the default
service termination times provided by the client
toolkit.

3.2 Data-replication

GDS 1

Client

Database 2GDS 2

data

data

da
ta

Database 1

Figure 9: Replicating data between 2 GDS

This use case considers a more complex
scenario of data replication between two remote
GDS. The client must query a relational
database table accessed through first GDS, then
deliver the results to the second GDS, where
they are imported into an existing table, as
shown in Figure 9. This scenario is similar to
that used by both the FirstDIG [8] and
EdSkyQuery-G [9] data integration projects.

The bar graph in Figure 10 shows the
number of lines of code and import statements
required with and without the client toolkit:

0

20

40

60

80

lines of code import statements

using client toolkit w ithout client toolkit

Figure 10: Replicating data between 2 GDS

with and without the client toolkit

In this scenario, the client toolkit has again
offered a benefit, reducing the number of lines
of code from 76 to 21, and the import
statements from 16 to 10. The gain is slightly
less than the previous use case because there is
no need to manipulate response documents or
process results in this scenario, all processing
being performed by the services.

As well as reducing code complexity, clients
built using the client toolkit are protected from
changes to the service WSDL interfaces,
perform document and activity schemas, and
dependent tooling. So long as the client toolkit
APIs remain stable, these clients can be updated
to make use of newer versions of OGSA-DAI
without requiring any code modifications.

4. Conclusions
The two use cases that were analysed in the
previous section indicate that the first release of
the client toolkit has achieved its design
objectives. Although concepts of clarity and
simplicity are rather subjective, the
measurements of code complexity that were
taken show that the client toolkit provides a
more straightforward API for interacting with
OGSA-DAI services than was previously
available. The reduced number of import
statements that were required indicates that
lower-level APIs such as GT3, Apache Axis,
Apache Xerces, and DOM have been
successfully abstracted away from the
developer.

The third aim of protecting developers from
future changes to specifications, schema and
dependent tooling is more difficult to qualify.
Although the client toolkit provides looser
coupling to underlying technologies and
removes the need to write and manipulate
schema validated XML, the decision to build
upon the concept of the factory and grid data
service may have been unnecessary. In fact, it
has been suggested that the client developer
need only be concerned with the structure and
capabilities of the underlying data resource. The
current process of contacting a factory in order
to instantiate a grid data service is extraneous
and could be avoided if the client toolkit was to
hide all factory interactions. This would
simplify the API and loosen coupling to the
service architecture, which is likely to change
during the transition from OGSI to WS-RF
compliance planned for release 5.

For the client toolkit to truly protect client
developers from future changes it will be
necessary for the OGSA-DAI project to adopt a
deprecation policy similar to that used by Sun
for Java. When changes to the client toolkit
APIs are introduced, any superseded methods
must enter a deprecation phase during which
they are preserved for a certain number of
releases before being removed. Any time a
method is deprecated notification must be sent
to the OGSA-DAI users mailing list providing
details and alternatives. This approach would
foster good relations with our developer
community and increase their confidence in
writing programs based on OGSA-DAI by
assuring them of sufficient time and information
to update their code whenever changes are
made.

The areas of metadata and service-data have
not yet been addressed adequately by the client
toolkit. Once a metadata standard has emerged

for describing data resources, the registry
service will become useful for locating
particular data resources and the client toolkit
should be extended to better expose this
information. A simple interface is also needed
for accessing and subscribing to service data
elements (the “state” of grid services), perhaps
conforming to the Observer [10] design pattern.

In summary, the client toolkit improves the
usability and shortens the learning curve for
OGSA-DAI. As the project continues, a suitable
deprecation policy will be needed to protect
developers while the APIs are extended and
improved to provide a higher-level abstraction
of the service architecture and improved
exposure of metadata and service-data.

Acknowledgements
This work is supported by the UK e-Science
Grid Core Programme, whose support we are
pleased to acknowledge. We also gratefully
acknowledge the input of our past and present
partners and contributors to the OGSA-DAI
project including IBM UK, University of
Manchester, University of Newcastle, and
Oracle UK.

References
[1] OGSA-DAI Project

http://www.ogsadai.org.uk
[2] Open Grid Services Architecture (OGSA)

http://www.globus.org/ogsa/
[3] Globus Project

http://www.globus.org
[4] DQP Project

http://www.ogsadai.org.uk/dqp
[5] Apache Axis

http://ws.apache.org/axis/
[6] Apache Xerces

http://xml.apache.org/xerces2-j/
[7] Document Object Model (DOM)

http://www.w3.org/DOM/
[8] FirstDIG Project

http://www.epcc.ed.ac.uk/~firstdig
[9] EdSkyQuery-G Project

http://edskyquery.forge.nesc.ac.uk
[10] Gamma, E., R. Helm, R. Johnson, J.

Vlissides, Design Patterns, Addison-
Wesley (1995)

	Abstract
	Introduction
	Shifting Sands
	Potholes

	The Client Toolkit
	OGSA-DAI Interactions
	Services
	Activities and Requests

	Use Cases
	Processing Query Result
	Data-replication

	Conclusions
	Acknowledgements
	References

