

Providing Data Transfer with QoS as Agreement-Based Service

Honghai Zhang
Department of Computer Science,

University of Illinois at Urbana, Champaign
hzhang3@uiuc.edu

Kate Keahey, William Allcock
Mathematics and Computer Science Division,

Argonne National Laboratory
{keahey,allcock}@mcs.anl.gov

Abstract

Over the last decade, Grids have become a successful
tool for providing distributed environments for secure
and coordinated execution of applications. The successful
deployment of many realistic applications in such
environments on a large scale has motivated their use in
experimental science [15, 5] where Grid-based
computations are used to assist in ongoing experiments.
In such scenarios, quality of service (QoS) guarantees on
execution as well as data transfer are desirable.

The recently proposed WS-Agreement model[16,6]
provides an infrastructure within which such quality of
service can be negotiated and obtained. We have
designed and implemented a data transfer service that
exposes an interface based on this model and defines
agreements which guarantee that, within a certain
confidence level, file transfer can be completed under a
specified time.

The data transfer service accepts a client's request for
data transfer and makes an agreement with the client
based on QoS metrics (such as the transfer time and
confidence level with which the service can be provided).
In our approach we use prediction as a base for
formulating an agreement with the client, and we combine
prediction and rate limiting to adaptively ensure that the
agreement is met.

1. Introduction

Issues of quality of service (QoS) are of increasing

importance to the success of Grid-based applications [17].
This need is especially pronounced in experimental
science applications such as the National Fusion
Collaboratory [5] and NEESgrid [15]. Enabling such
interactions on the Grid requires two related efforts: (1)
the development of sophisticated resource management
strategies and algorithms and (2) the development of
protocols enabling structural negotiation for the use of
those resources.

Progress in the second area has been facilitated by
formulating and refining the abstraction of Grid services
[1]. Based on this abstraction, the Global Grid Forum is
developing a set of protocols, called WS-Agreement
[16,6], for the negotiation, creation, and management of
agreements for services in the Grid. An agreement

constitutes a provisioning target; a good articulation of
such targets allows the provider to better estimate demand
and therefore make better provisioning decisions. Further,
an agreement can be used as an adaptation target where
automatic management allows providers to both leverage
and counteract the changing conditions on the Grid.

In this paper we address both issues. Specifically, we
illustrate how brokering needs influence the development
of agreement terms (in our case, priority levels and
confidence levels associated with a request) and how
forming agreements based on those terms can improve the
client’s control over a data transfer and the provider’s
chances of satisfying a request even in an unpredictable
environment such as the Internet. We start by describing
an agreement-based data transfer service. The service
allows the client to form agreements for quality of data
transfer and later accepts and executes data transfer
requests based on those agreements. We describe an
architecture and protocol for forming and claiming such
agreements.

We also present three prototype implementations of
such a service. In our first implementation, the
“agreement” has a purely informational role and is based
on prediction of network bandwidth for a specific future
time; the only obligation undertaken is the future transfer
of data, not the quality of that transfer. In the second
implementation, the provider uses a reservation table and
rate limiting to split the bandwidth between several
clients requesting overlapping transfers. In other words,
the provider offers a stronger guarantee than in the first
case, in that if the bandwidth is as predicted (i.e., there is
no additional “unexpected” network traffic), the client’s
requests will be satisfied. In the third implementation,
further improvement is provided through the inclusion of
adaptation: the client’s requests are divided into two
priority levels, and the provider uses rate limiting to
compensate for encountered Internet traffic for the high-
priority requests, at the cost of the low-priority requests.

The paper is structured as follows. In Section 2,we
discuss related work. In Section 3, we briefly introduce
the data transfer services, factories, and architecture. In
Section 4, we present the three data transfer service
implementations. In Section 5 we show experimental
results on our testbeds. In Section 6, we conclude the
paper and discuss future work.

1

2. Related Work

Two classes of research are related to our work. The

first refers to bandwidth prediction and the second to
traffic rate control and adaptation.

Numerous researchers have investigated ways to
predict network bandwidth [11,20,21,24,25,26,27,28,29,
30]. Most of these use short TCP messages to predict the
available end-to-end bandwidth. For example, Carter et
al. [24] predicted the available bandwidth based on the
dispersion of long packet trains at the receiver, and Lai
and Baker [11,25] predicted the bottleneck bandwidth by
sending a pair of back-to-back packets. In general, these
methods are able to predict only the “current” network
bandwidth by sending a few short TCP probing packets.
Our application, however, requires predicting the network
bandwidth in a “future” time in order to negotiate
agreements. Thus, we cannot directly apply these
methods. In addition, the predicted available bandwidth
may not be achievable by any TCP streams because, in
general, TCP’s congestion control mechanism prevents
TCP from using all available bandwidth [30].

 Several efforts have been made to predict the steady-
state TCP throughput, the throughput that can be achieved
by a long TCP flow. For example, the Network Weather
Service (NWS [2,3]) monitors network throughput by
sending out short data messages (64 KB). Wolski [2] has
investigated different methods of prediction, including
mean-based methods, median-based methods, and
autoregressive methods; for this work Wolski
dynamically chooses the prediction method based on
prediction errors in the previous step, and he performs
measurements and predictions on a very fine time scale
(measuring the data roughly every 30 seconds). Swaney
and Wolski [3] use a combination of short probing
packets and previously observed long HTTP transfers to
predict the “current” long HTTP transfers. In each case,
only a one-step prediction is made. Our work aims to
provide multi-step predictions, and we do not need to
generate data at the time of prediction because we use a
history-based data transfer log.

Vazhkudai and Schopf [4] use linear regression
techniques to predict large data transfers. They start with
simple univariate prediction methods, build a linear
model between the NWS measured bandwidth, disk load,
and the data transfer rate using GridFTP [9,13,19], and
then predict the GridFTP performance based on the disk
load and measured bandwidth using NWS. This work
requires instantaneous data transmission at the time of
prediction, whereas we do not. Also, their prediction is
used only for one-step prediction, and they predict the
network bandwidth only at the current time, whereas we
try to predict network bandwidth at a future time.

In summary, most of the existing efforts on prediction
focus on predicting current available bandwidth using
history data or small-size probing. Our requirement, on

the other hand, it to predict the future bandwidth; thus, we
perform multistep predictions. In addition, our predictor
not only gives a single prediction value but also gives the
probability distribution of prediction errors. These values
are used to model the confidence level with which the real
bandwidth is above or below a given threshold value.

Likewise, many methods [32,33,34,22,23] are also
used to control the transmission rate of networking traffic
which have the similar functions to the rate limiting
presented in this paper. Most of them are implemented in
the intermediate routers. Two typical examples are token
bucket and leaky bucket [32,33]. In token bucket, tokens
are generated with a constant rate until the total number
of tokens reaches the capacity of the bucket. When a
packet arrives, it is transmitted only if there are tokens in
the bucket. When a packet is transmitted, it consumes a
token. If a packet arrives and there is no token in the
bucket, the packet will be buffered in a queue until a
token is generated. A leaky bucket is similar to token
bucket except that the capacity of the bucket is 1. In other
words, the tokens cannot be accumulated. The rate-
limiting and adaptation are similar to token bucket, but
they are implemented at the application layer of sender
side instead of routers. In addition the rate-limiting and
adaptation in this paper control the average transfer rate
instead of instantaneous transfer rate.

3. Agreement-Based Architecture
3.1. Overview of WS-Agreement

WS-Agreement [16,6] is a work in progress describing
an agreement-based approach to service management.
The process of agreement creation starts with a
negotiation phase, in which clients represent their
requirements to the providers, who respond by defining
what capabilities they can provide. This dialogue ends
when both sides arrive at a satisfactory description of
capabilities and commit to the agreement. We note that an
agreement service may be distinct from a group of
services or actions that implement the terms of an
agreement. The purpose of an agreement service is merely
to provide abstractions for the negotiation and
management of an agreement.

The service and levels of service that are the object of
negotiation are described by agreement terms. The WS-
Agreement specification defines a term type for
describing agreement terms, but it does not provide a term
language for any specific domain. It is assumed that such
term languages to describe domain-specific concepts will
be developed separately as needed. Specific terms may be
grouped using compositors described by WS-Policy [18].

The current focus of the specification is a description
of architecture and the negotiation model. The negotiation
model allows renegotiating agreements after creation and
concludes in a commit stage that can be triggered by
either side. The negotiation is fine-grained and proceeds

2

on the level of specific terms that can be annotated as
required, optional, observed (agreed on), or ignored.

3.2. Motivating Scenario: Data Transfer
In a simple motivating scenario a client may want to

transfer some data (which can be the program to be
executed remotely, or the input/output data files) from a
source URL to a destination URL. In addition, the client
will want to specify the transfer data size D, the transfer
start time S, and the transfer duration T. We do not
require the client to start to transfer at exact time S.
Instead, the client's request should be satisfied as long as
he claims his reservation by associating the agreement
with a specific transfer instance during an availability
time window W. A broker (implemented by the service
provider), with the help of prediction of available network
bandwidth and the prediction error (detailed in the next
section), can estimate the confidence level with which the
transfer can be completed within time T.

Based on this motivating example, we find the
following information important for negotiating the
requests: the data transfer start time S, availability time
window W, data size D, transfer time T, and confidence
level α. After making a reservation using the 5-tuple
(S,W,D,T,α), a client can claim his transfer request. If the
client submits his transfer request in any time between S
and S+W, and his request data size is less than or equal to

D, the transfer will be completed within time T after his
request with a confidence level α (which means with
probability α, his request will be completed on time).

3.3. Agreement Terms for Data Transfer
Service agreements represent a contract between a

service provider and a client. The XML fragment below
represents agreement terms for data transfer in our
system. In addition to generic terms describing the parties
to the agreement, the potential dependencies, and the time
window describing the validity period of the agreement,
the set of terms contains a service description and
information about service-level objectives.

The service description tells us what will be done
under a given agreement: how much data will be moved
between what points. The service-level element describes
how this should happen: the time of data transfer should
not exceed a certain bound, the confidence level of
providing that bound is given, and the priority of the
transfer (which may be linked to some form of payment)
is described. In addition, the service-level term may give
information about other qualities pertaining to the
transfer, for example, describing data integrity (lossy
versus non-lossy transfer) or further describing the quality
of the guarantee (based on prediction only or on
adaptation).

<xsd:complexType name="AgreementTermType">
 <xsd:sequence>
 <xsd:element name="parties" type="tns:AgreementPartiesType"/>
 <xsd:element name="serviceInstanceHandle" type="xsd:anyURI"/>
 <xsd:element name="dependency" type="xsd:anyURI"
 minOccurs="0"
 maxOccurs="unbound"/>
 <xsd:element name="availability" type="tns:ScheduleType"/>
 <xsd:element name="expirationTime" type="xsd:dateTime"/>
 <xsd:element name="serviceDescription" type="xsd:serviceDescriptionType"/>
 <xsd:element name="serviceLevel" type="tns:serviceLevelType"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AgreementPartiesType">
 <xsd:sequence>
 <xsd:element name="client" type="xsd:anyURI"/>
 <xsd:element name="provider" type="xsd:anyURI"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ScheduleType">
 <xsd:sequence>
 <xsd:element name="startTime" type="xsd:dateTime"/>
 <xsd:element name="endTime" type="xsd:dateTime"/><
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="serviceDescriptionType">
 <xsd:sequence>
 <xsd:element name="source" type="xsd:String"/>
 <xsd:element name="destination" type="xsd:String"/>
 <xsd:element name="size" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

3

<xsd:complexType name="serviceLevelType">
 <xsd:sequence>
 <xsd:element name="timeBound" type="xsd:duration"/>
 <xsd:element name="confidenceLevel" type="xsd:int"/>
 <xsd:element name="priority" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

4. Implementation of Data Transfer Service

The implementation of the data transfer service relies
on a combination of prediction, rate limiting, and
adaptation. First, prediction of available network
bandwidth is based on historical data of similar data
transfers collected by service provider. The predictor
provides two results: the predicted value and the relative
error of the predicted value. We use the error to model
the confidence level term because it indicates how much
the predicted value is to be trusted. Second, we
implement a rate-limiting driver for the Globus XIO
(eXtensible Input and Output) system [12] that can
control the averaged packet-sending rate and the burst
size according to the broker's setting. Third, we perform
priority-based adaptation of data transfer by dynamically
adjusting the data transfer rate of each simultaneously
transmitting flow.

4.1. Prediction-Based Data Transfer Service
The objective of predicting network bandwidth is to

obtain necessary information about the network
bandwidth at a future time, as well as the prediction error
associated with a given prediction. When the service
broker receives a request with a certain QoS requirement,
it will be able to determine whether it can fulfill the
requirement based on the predicted network bandwidth
and the prediction errors. If according to the prediction it
can accomplish the request with high confidence,
performing adaptation may be unnecessary.

4.1.1. Historical Data Generation
Our prediction is based on logs of historic data

transfer using GridFTP [9,13,19] and the logs are
generated by NetLogger service [8]. The NetLogger
service [8] provides a general toolkit for real-time
logging, visualization, and diagnosis of system
performance data such as data transfer size, time, and
duration, and it has been incorporated into the GridFTP.
All the experiments reported in this paper are performed
on a consistent testbed which consists of three testing
sites: Argonne National Laboratory (ANL), the
Information Sciences Institute (ISI) at USC, and
Lawrence Berkeley National Laboratory (LBNL).

Because such a log does not yet exist, we generate the
log by periodic measurement. We send real traffic
through GridFTP every time interval D, and we log the

bandwidth for each transfer using NetLogger [8]. We
now have a time series of bandwidth f(1),...,f(N), where
N is the total number of history data. To smooth the
measured bandwidth, we calculate the average
bandwidth fm(1),..., fm(n) (notice that we can still obtain
the average bandwidth by averaging the throughput
within each time window even if the historic log is
aperiodic) by

m

jf
if

im

mij
m

∑ −+==)1(1
)(

)((1)

and then predict the future network bandwidth based on
the averaged time series (fm(1), … , fm(n)) of data
samples.

Using GridFTP, we performed experiments to
measure the throughput between the three sites in our
testbed. Since the number of streams and file sizes may
affect the prediction results, we perform measurements
using different numbers of streams and different file
sizes. In each transfer we randomly generate the
sequence of number of streams; and within each number
of stream, we randomly generate the sequence of the file
size. Then we do the transfer for each combination of
number of streams and file size. We measure the
throughput once every half hour and use the average
throughput of the two transfers in each hour as the
throughput during that hour. We then predict the
throughput for each number of streams and file size
combinations.

4.1.2. Prediction Method
We predict the future bandwidth using the linear

minimum mean square error (LMMSE) predictor [7].
Specifically, given the series {fm(k): k = 1,...,n}, we
express the average bandwidth fm(n+1) in the next
aggregated interval mD as a weighted linear combination
of the past n samples. That is, the estimate (written as

) of f)1(+
∧

nfm m(n+1) is expressed as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+
∧

)(
...

)2(
)1(

],...,,[)1(21

nf

f
f

aaanf

m

m

m

nm
, (2)

where a1,a2,...,an are the LMMSE coefficients; ai’s should
be chosen to minimize the mean square error of the
prediction. In practice, we may not need all the history
data to predict the next step data. Instead, we use only
the most recent n data as the history data; n is called the

4

window size of the LMMSE predictor. There are two
ways to make the k-step prediction, that is, to predict
fm(n+k): (i) perform one-step prediction k times or (ii)
calculate the k-step LMMSE coefficients a1,a2,...,an [7]
and plug the result into Equation (2) to directly calculate
the k-step prediction value. In general, the second
method is more accurate, but it requires (k+n) history
data. We use the second method whenever possible.
History Data Fixing: Occasionally we observe a single
spike in the history data. In general the occurrence of the
spike is unpredictable. Such a spike can adversely affect
the prediction of the normal data. Therefore, we replace
any spikes with the mean of the history data (but we keep
them in the calculation of the prediction error of the
spike data). In order to repair such spike data, we first
calculate the mean and estimated standard deviation of
the data used for prediction. Then we replace any data in
the history that is out of mean ± 2 * standard deviation.
Such methods are commonly used in statistical
estimation to eliminate abnormal samples [31].

4.1.3. Prediction Results
We first make a step-k prediction of the network

bandwidth at time s using only the data before and at s
(hour). Then at time k+s, we again perform a real
measurement using GridFTP. We calculate the relative
error as follows:

throughputpredicted
throughputmeasuredthroughputpredicteder _

__ −
= (3)

The absolute relative error is the absolute value of the
relative error. We performed experiments and predictions
for each step k and for different window sizes, (i.e.,
different n). We summarize our four main results below.

First, in general, using larger window size may have a
smaller prediction error. However, once the window size
is greater than 24 (hours), the prediction error does not
reduce significantly. Second, short-term prediction errors
are usually smaller than long-term prediction errors.
Most of the prediction errors for up to 48-step
predictions are less than 15%, and most one-step
prediction errors are less than 10%, except for single-
stream transfers (the transfers that only use one tcp
connection). Third, prediction errors for multistream are
usually smaller than those for single stream. Fourth,
using the history data fixing technique reduces the
prediction error, making the prediction results more
stable.

One additional feature of our predictor is that it gives
the prediction error distribution based on historic
information. This is important for providing a confidence
level of a given prediction result. With such information,
we can obtain a confidence level with which the real
measured bandwidth is at least the predicted value. For
example, for the single stream and 500 MB file transfer,
using the error distribution graph, we find that, with a
confidence level 90%, the relative error is at least -12%.

Now if at some time the predicted available bandwidth is
20 Mbps, then based on Equation (3)(the relative
prediction error), we can conclude that in the next hour,
the real measured bandwidth will be at least 17.6 Mbps
(=20MBps * (1-12%)) with a confidence level 90%.

4.2. Rate Limiting
Prediction allows us to build a data transfer service

capable of predicting QoS of data transfer at a given time
for one client, and then performing that data transfer.
However, if several clients want to share the same
connection with various QoS requirements, a mechanism
of splitting the bandwidth between those competing
demands is necessary. We therefore augmented our data
transfer service to implement rate limiting, thereby
enabling the service to share available bandwidth
between different clients. Specifically, we implemented a
bandwidth limiter as Globus XIO [12] (eXtensible Input
and Output) driver.

The XIO system used by GridFTP [9,13,19] presents
a Read/Write/Open/Close interface. A stack of drivers is
written to support all of these functions. Drivers are
implemented for common operations, such as TCP and
UDP network transport, Posix [14] file access, and GSI
security. When a handle is opened, an XIO stack is built.
The standard GridFTP stack consists of TCP and GSI,
providing a GSI-authenticated TCP network connection.
A rate-limiting driver could also be pushed onto this
stack.

In our implementation, the rate-limiting driver can
specify the rate bandwidth, maximum “catchup” rate
(which is the maximum transmission rate when a
transmission is behind its schedule), burst size, and
maximum random interval. When a buffer is passed in
for network transmission, the size of the buffer is divided
by the burst size. A periodic callback can then be
scheduled every interval (seconds) that writes the data
with maximum burst size. This interval is calculated as
the burst size divided by the rate and then minus a
random interval that is uniformly distributed from 0 to
the maximum value of a random interval. Thus, what we
have is a burst of best-effort transmission, followed by
no transmission. Over the aggregate of the transfer,
however, we have a limited “smooth” transfer rate. The
random interval is added to avoid possible
synchronization of different data transfers. The next
transmission must happen after the current transmission
completes. If for some reason, such as network
congestion, a transmission takes longer time than the
scheduled interval, the next transmission will start right
after its previous transmission completes. If the network
condition later becomes better and the transmissions are
still lagging behind the scheduled time according to the
specified rate, the driver will try to catch up the lost rate
by using a shorter interval, which is calculated by the
burst size divided by the “catchup” rate.

5

In our experiments, we empirically set the burst size
to be 100 KB and maximum random interval to be 0. In
our experimental setting, the random interval does not
seem to affect the bandwidth significantly, but we still
keep this function for future purposes. We set the
maximum catchup rate to be 4 times the specified rate
based on experiments.

We performed experiments using the rate-limiting
driver and compare the results with non-rate-limited
transfer. We assume that the data transfer service is
splitting the bandwidth between 20 clients, each assigned
one stream for data transfer. Each client transfers a 100
MB file. First we perform data transfer under no (or
little) background traffic. Figure 1 compares the data
transfer time (a) without rate limiting driver, and (b) with
rate limiting driver. We can see clearly that although
both achieve approximately the same aggregate
bandwidth, not all of the clients can get the requested
bandwidth without using rate-limiting driver.

(a) Without Rate Limiting

(b) With Rate Limiting

Figure 1: File transfer time with and without a rate-limiting
driver and with no (or little) background traffic

In addition, using rate limiting allows us to assign
different transfer rates to different cliets, so that the
available bandwidth is split unevenly between clients
based on agreement terms requested by individual

clients. As an example, Figure 2 shows the data transfer
time of all clients where we apply 4.0 Mbps to the first
10 clients and 2.2 Mbps to the next 10 clients.

Figure 2: File transfer time with a rate-limiting driver: the
first 10 streams are assigned a rate of 4.0 Mbps, and the
second 10 streams are assigned a rate of 2.2 Mbps

If bursty background traffic comes in during the

transmission, the data transfer rate even with the rate-
limiting driver could be affected. As an example in
Figure 3, we inject four background TCP streams during
the data transfer (the rate of each steams used in the rate
limiting driver is still assigned based on the predicted
value). We can see that both rates of the data transfers
with and without rate limiting driver are seriously
affected. Because of the chaotic nature of Internet
[10,11], avoiding such background traffic is impossible,
and the data transfer service may not be able to fulfill its
obligations to the individual clients. However, we can
still see that with rate-limiting, flows are affected more
evenly rather than just a few of them are heavily affected
and others remain almost intact (as in the case of without
rate-limiting).

4.3. Adaptation
To deal with the uncontrolled background traffic, we

augmented the implementation of the data transfer
service to include adaptation and thus allow quality data
streams to recover from the effects of burstiness.

By default, the rate-limiting driver will automatically
catch up the “lost rate” when the network conditions
become better. But this is not sufficient when the
networks experience bad conditions for a time longer
than the data transmission time or near the end of a data
transmission. Therefore, we divided clients into two
classes: high-priority connections and low-priority
(presumably “cheaper”) connections. The data transfer
service acts like a broker to manage all connections. At
the time of network congestion, the broker adjusts the
transmission rates so that high-priority connections catch
up first, at the cost of the low-priority connections.

6

(a) Without rate limiting

(b) With Rate limiting

Figure 3: File transfer time with and without a rate-limiting
driver when four background TCP streams are injected

Specifically, we created a notification and control
mechanism between the broker and rate-limiting driver.
The broker provides a callback function to the rate-
limiting driver when invoking it for the high priority
connections. When the rate-limiting driver observes that
it is transmitting slower than the set rate, it invokes a
callback function to notify the broker. The broker then
looks for connections with low priority and sends them a
control message to reduce their transmission rate. In this
way, connections with higher priority get more
bandwidth at the time of network congestion.

In Figure 2, we observe that the first ten clients don’t
get the exact bandwidth they request, namely, that the
file transfer be completed within 25 seconds. The reason
rests with congestions and competitions from low-
priority flows. We now perform adaptations on the
transfer in which the first ten streams are still assigned
the 4.0 rate but are now categorized as high-priority
clients, and the second ten streams are still assigned with
the 2.2 rate but as categorized as low-priority clients.

Figure 4 shows the file transfer time for each client
under these new conditions. The first ten clients now
meet their requirements very well, while some of the low
priority clients no longer get the requested bandwidth.

Figure 4: Data transfer time with a rate-limiting driver: the
first 10 streams are assigned a rate of 4.0 Mbps, and the last
10 streams are assigned a rate of 2.2 Mbps. We perform
adaptation in which the first ten streams are assigned high
priority and the second ten streams low priority.

5. Experimental Results

Using our new prediction results and resource
management methods, we perform three sets of
experiments. In the first set of experiments, we use
prediction alone without rate limiting. In the second set
of experiments, we use prediction combined with rate
limiting. In the third set of experiments, we use
prediction combined with rate limiting and adaptation.
For the method of rate limiting, we observe that if we set
the rate to be exactly the predicted network bandwidth,
we still get quite a large violation. Hence, our goal is to
investigate what rate (the percentage of the predicted
rate) should be set in order to obtain a small violation.
For the method of adaptation, our goal is to investigate
how many flows should be set as high priority and how
many should be set as low priority, in order to obtain
small violation for the high-priority flows.

In each set of experiments, we assume there are ten
clients. Each wants to transmit a data file with 50M
bytes. We are interested in whether each client's request
is met. In all the experiments, we consider predictions
over 6 hours (i.e., we make predictions at time t and do
another real experiments at t+6 hour). In each
experiment, we measure the real transmission time for
each client and compare it with the agreed transmission
time (which is specified based on the predicted available
rate and prediction error bounds; see below). We
calculate the violation as

7

timetransferagreed
timetransferagreedtimetransferrealviolation

__
____ −

= (4)

A negative or zero violation indicates the real
transmission time is less than equal to the agreed
transmission time. In each set, we perform 10
experiments, and totally we have 100 values of violation.
We then plot the distribution function of the violation for
each set of experiments.

In most of the experiments below, we see that the real
transmission time may exceed the agreed transmission
time based on the rate we set in the rate-limiting driver.
If we allow the violation to be less than a certain
tolerance level, the transmission is considered as meeting
the request of timely transmission (we can either make
this as part of the agreement or set the rate in the rate
limiting driver slightly higher than the required rate
based on the agreement). In the following experiments
we assume a tolerance level of 5% (the value may be
adjusted based on network conditions and/or the
agreement between the client and server).

5.1. Prediction Alone vs. Rate Limiting
We first compare two sets of experiments. In the first

set, we use the prediction alone (i.e., no rate limiting or
adaptations). In the second set, we use the rate-limiting
technique and set the rate as the predicted available
bandwidth. In both sets, we set the agreed transmission
time as the data size divided by the predicted available
bandwidth. Figure 5 shows the violation distribution of
the two sets of experiments.

We can see in Figure 5 that without rate limiting,
some clients can get a much shorter transmission time
than the agreed one, which may create traffic congestion
over the Internet.

Figure 5: Prediction alone vs. rate limiting using the
predicted available bandwidth

In addition, other clients may get a higher violation.
Moreover, we may still get quite a large violation if we
set the agreed transmission rate using the predicted
available bandwidth. The reason is that using the
predicted rate may still cause instantaneous network
congestion.

5.2. Rate Limiting
Next we perform three sets of experiments to compare

different rates in the rate-limiting driver (see Figure 6).
In the first set of experiments, we set the rate exactly to
the value we predicted. If we allow a 5% tolerance level,
nearly 70% of the experiments meet the request of timely
transmission. In the second and third sets of experiments,
we set the rate such that the real available bandwidth is
above that value with 90% and 95% probability, which
we call 90% confidence level rate and 95% confidence
level rate. If we again allow a 5% tolerance level,
approximately 90% of the experiments meet the request
of transmission time in the second set and approximately
95% of the experiments do in the third set.

Figure 6: Rate-limiting using the predicted available rate,
90% confidence rate, and 95% confidence rate

5.3. Rate Limiting with Adaptation
We evaluate rate limiting with adaptation by

comparing two sets of experiments (see Figure 7). In the
first set, we use rate limiting with the predicted rate. In
the second set, we use the rate limiting combined with
adaptation, and we let two streams among the 10 streams
have low priorities, whose rates will be adjusted at the
time of network congestions. We see that with rate
adaptation, if we set 80% of the flows to be high-priority
flows and the rest low-priority flows, most of the high-
priority streams have lower violations, at the cost that
some of the lower-priority streams get much larger
violations.

8

Figure 7: Rate-limiting using the predicted available rate,
with and without adaptation

6. Conclusion

Our experiments illustrate how data transfer brokering
can use the concept of agreements to improve a client’s
information and control over the quality of data transfer
over the Internet without resorting to low-level
bandwidth reservations. In the first of the presented
implementations, the agreement has merely an
informational role. At the same time, the information
provided is closely coupled with the service that will
eventually carry out the request, and the prediction is
made for a specific period of time in the future, which is
of value to the client. The second implementation
improves on the first by managing quality of service
between clients of that particular transfer service. The
third widens its scope to account for third-party traffic
and other conditions outside the control of the service.

We find that if we reserve 80% for high-priority
transfers within our testbed, the prediction combined
with rate limiting and adaptation almost always
guarantees that the violation of data transfer agreements
will be small (≤5%).

Overall, we find that from the client’s viewpoint, the
ability to enter into agreements for data transfer
significantly increases their tractability, while from the
provider’s perspective the development of specific terms
of service (such as differences in priority) improves the
chances of delivering requested QoS even in an
unpredictable environment.

Further work on improving the adaptation strategies
and therefore the provider’s ability to satisfy the client’s
QoS would include employing rate limiting to favor
under-performing requests whose transfer time is about
to end and employing multipath routing in which the
broker can dynamically adjust the flow rate on different
route to satisfying the QoS requirements.

References
[1] I. Foster, C. Kesselman, J. Nick and S. Tuecke. The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. Open Grid Service
Infrastructure WG, Global Grid Forum, June 22,2002
[2] R. Wolski. Forecasting Network Performance to Support
Dynamic Scheduling Using the Network Weather Service.
Proc. of 6th IEEE Symp. on High Performance Distributed
Computing, Portland, Oregon, 1997
[3] Martin Swany and Rich Wolski. Multivariate resource
performance forecasting in the network weather service. In
Supercomputing, 2002
[4] S. Vazhkudai and J. Schopf. Using Regression Techniques
to Predict Large Data Transfers, submitted to the Internal
Journal of High Performance Computing Applications, 2002
[5] Keahey, K., M.E. Papka, Q. Peng, D. Schissel, G. Abla, T.
Araki, J. Burruss, S. Feibush, P. Lane, S. Klasky, T. Leggett, D.
McCune, and L. Randerson. Grids for Experimental Science:
the Virtual Control Room. In Challenges of Large Applications
in Distributed Environments (CLADE). 2004.
[6] Keahey, K., T. Araki, and P. Lane. Agreement-Based
Interactions for Experimental Science. In Europar. 2004.
[7] G. Grimmett and D. Stirzaker. Probability and Random
Processes. Oxford University Press, 2001
[8] B. Tierney, W. Johnson, B. Crowley, G. Hoo, C. Brooks
and D. Gunter. The NetLogger Methodology for High
Performance Distributed Systems Performance Analysis. Proc.
of 7th IEEE Symp. on High Performance Distributed
Computing, 1998
 [9] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, S.
Tuecke.Data Management and Transfer in High Performance
Computational Grid Environments. Parallel Computing
Journal, Vol. 28 (5), May 2002, pp. 749-771
[10] V. Paxson. Measurements and Analysis of End-to-End
Internet Dynamics. Ph.D thesis of University of California,
Berkeley. April, 1997
[11] K. Lai and M. Baker. Nettimer: A Tool for Measuring
Bottleneck Link Bandwidth. Proceedings of the USENIX
Symposium on Internet Technologies and Systems. March,
2001
[12] The eXtensible Input Output library for the Globus
Toolkit. http://www-unix.globus.org/developer/xio/
[13] GFD.020 GridFTP: Protocol extensions to FTP for the
Grid. http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf
[14] J. Barkley, L. Carnahan, K. Olsen and J. Wack.
Improving Security in a Network Environment.
http://csrc.nist.gov/publications/nistpubs/800-7/node136.html
 [15] Pearlman, L., C. Kesselman, S. Gullapalli, B.F. Spencer,
J. Futrelle, K. Ricker, I. Foster, P. Hubbard, and C. Severance,
Distributed Hybrid Earthquake Engineering Experiments:
Experiences with a Ground-Shaking Grid Application.
accepted to the 13th International Symposium on High
Performance Distributed Computing (HPDC-13), 2004
[16] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke and M. Xu.
Agreement-based Grid Service Management (OGSI-
Agreement) Version 0. https://forge.gridforum.org/projects/
graap-wg/document/Draft_OGSI-agreement_Specification/en/1
/Draft_ OGSI-Agreement_Specification.doc.

9

http://www-unix.globus.org/developer/xio/
https://ms2.express.cites.uiuc.edu/cgi-bin/fetch.cgi?url=http%3A%2F%2Fwww.ggf.org%2Fdocuments%2FGWD-R%2FGFD-R.020.pdf
http://csrc.nist.ggov/publications/ nistpubs/800-7/node136.html

[17] I. Foster. What is the Grid? A Three Point Checklist.
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
, 2002
[18] M. Hondo, and C. Kaler. Web Services Policy Framework
(WS-Policy). http://www-106.ibm.com/developerworks/
webservices/library/ws-polfram/, 2003
[19] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I.
Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnel, S.
Tuecke. Secure, Efficient Data Transport and Replica
Management for High-Performance Data-Intensive Computing.
IEEE Mass Storage Conference, 2001[20] C. Dovrolis, P.
Ramanathan and D. Moor. What do packet dispersion
techniques measure? IEEE INFOCOM, April 2001.
[21] M. Mathis and J. Madhavi. Diagnosing Internet congestion
with a transport layer performance tool. In Proceedings of
INET’96, 1996.
[22] S. Jamaloddin Golestani, A self-clocked fair queuing
scheme for broadband applications, In Proc. IEEE
INFOCOM'94, pages 636--646, IEEE, 1994.
[23] P. Goyal, H. M. Vin, and H. Cheng, Start-time fair
queueing: a scheduling algorithm for integrated services packet
switching networks, ACM SIGCOMM'96, pages 157--168,
ACM press, August, 1996
[24] R. L. Carter and M.E. Crovella. Measuring bottleneck link
speed in packet-switched networks. In Proc. of IEEE
INFOCOM, Apr. 2001, pp. 905-914
[25] K. Lai and M. Baker. Measuring link bandwidths using a
deterministic model of packet delay. In Proc. of IEEE
INFOCOM, Apr. 1999, pp 235-245.
[26] V. Paxson. End-to-end Internet packet dynamics.
IEEE/ACM Transactions on networking. Vol 7. pp277-292,
June 1999.
[27] G. Jin, G. Yang, B. Crowley and D. Agarwal. Network
characterization service (NCS). In Proc. of 10th IEEE Symp.
High Performance Distributed Computing, Aug. 2001, pp 289-
299.
[28] B. Melander, M. Bjorkman and P. Gunningberg. A new
end-to-end probing and analysis method for estimating
bandwidth bottlenecks. In IEEE Globecom 2000, pp 415-420.
[29] V. Ribeiro, M. Coates, R. Riedi, S. Sarvotham, B.
Hendricks and R. Baraniuk. Multifractal cross-traffic
estimation. In Proc. ITC Specialist Seminar IP traffic
Measurement Modeling and Management, Sep. 2000
[30] M. Jain and C. Dovrolis, End-to-end available bandwidth:
Measurement methodology, dynamics, and relation with TCP
throughput. In Proceedings of ACM SIGCOMM '02, Pittsburgh,
PA, Aug. 2002.
[31] R. O. Kuehl. Statistical Principles of Research Design and
Analysis. Duxbury press 1994. pp116-117
[32] D. Bertsekas and R. Gallager. Data Networks. Prentice
Hall. 1992
[33] R. Jain. http://www.cse.ohio-state.edu/~jain/talks/ftp/
mplste/sld032.htm
[34] L. Zhang, VirtualClock: a new traffic control algorithm for
packet-switched networks. ACM Trans. on Computer Systems,
Vol. 9, No. 2, May 1991

10

http://www.cse.ohio-state.edu/~jain/talks/ftp/ mpls_te/ sld 032.htm
http://www.cse.ohio-state.edu/~jain/talks/ftp/ mpls_te/ sld 032.htm

	Abstract
	Introduction
	Related Work
	Agreement-Based Architecture
	Overview of WS-Agreement
	Motivating Scenario: Data Transfer
	Agreement Terms for Data Transfer

	Implementation of Data Transfer Service
	Prediction-Based Data Transfer Service
	Historical Data Generation
	Prediction Method
	Prediction Results

	Rate Limiting
	Adaptation

	Experimental Results
	Prediction Alone vs. Rate Limiting
	Rate Limiting
	Rate Limiting with Adaptation

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

