
Article

Linking scientific instruments and computation:
Patterns, technologies, and experiences
Rafael Vescovi,1 Ryan Chard,1 Nickolaus D. Saint,6 Ben Blaiszik,1,6 Jim Pruyne,1,6 Tekin Bicer,1,3 Alex Lavens,4

Zhengchun Liu,1 Michael E. Papka,2,7 Suresh Narayanan,3 Nicholas Schwarz,3 Kyle Chard,1,5 and Ian T. Foster1,5,*
1Data Science and Learning Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439, USA
2Argonne Leadership Computing Facility, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439, USA
3X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439, USA
4Structural Biology Center, Argonne National Laboratory, 9700 S. Cass Ave., Lemont, IL 60439, USA
5Department of Computer Science, University of Chicago, 5730 S. Ellis Ave., Chicago, IL 60615, USA
6Globus, University of Chicago, 5730 S. Ellis Ave., Chicago, IL 60615, USA
7Department of Computer Science, University of Illinois Chicago, 1200 W. Harrison St., Chicago, IL 60607, USA
*Correspondence: foster@anl.gov
https://doi.org/10.1016/j.patter.2022.100606

SUMMARY

Powerful detectors at modern experimental facilities routinely collect data at multiple GB/s. Online analysis
methods are needed to enable the collection of only interesting subsets of suchmassive data streams, such
as by explicitly discarding some data elements or by directing instruments to relevant areas of experimental
space. Thus, methods are required for configuring and running distributed computing pipelines—what we
call flows—that link instruments, computers (e.g., for analysis, simulation, artificial intelligence [AI] model
training), edge computing (e.g., for analysis), data stores, metadata catalogs, and high-speed networks.We
review common patterns associatedwith such flows and describemethods for instantiating these patterns.
We present experiences with the application of these methods to the processing of data from five different
scientific instruments, each of which engages powerful computers for data inversion,model training, or
other purposes. We also discuss implications of such methods for operators and users of scientific fa-
cilities.

INTRODUCTION

Humphry Davy observed that ‘‘[n]othing tends so much to
the advancement of knowledge as the application of a new
instrument.’’1 Today, powerful new instruments such as
upgraded synchrotron light sources,2–5 free-electron lasers,6

microscopes,7,8 telescopes,9 field laboratories,10 and robotic
laboratories11–13 provide exciting new means to study phenom-
ena in a broad range of scientific disciplines.
The power of these new instruments derives from their ability

to probe reality rapidly and at fine spatial and temporal scales.
In so doing, they can generate data at rates (multi-GB/s) and

THE BIGGER PICTURE The industrial revolution transformed society via large-scale automation of
manufacturing. Today, AI- and robotics-driven automation of scientific research seems set to usher in a
new era of accelerated discovery. But just as the industrial revolution depended on new replicable and scal-
able manufacturing processes andmethods for delivering the copiousmechanical power required by those
processes, so the automated discovery revolution demands newmethods for implementing research auto-
mation processes and for connecting those processes to computing and data power. We present here new
methods that address these essential needs by allowing scientists to capture common automation patterns
in reusable flows and to embed such flows in a global trust, data, and computing fabric that enables instant
access to powerful AI, simulation, and other computational capabilities.We use examples from synchrotron
light sources to show how these methods can be realized in software and applied at scale.

Production: Data science output is validated, understood,
and regularly used for multiple domains/platforms

Patterns 3, 100606, October 14, 2022 ª 2022 The Author(s). 1
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ll
OPEN ACCESS

volumes (100 + TB/day14,15) that demand online computing, both
to extract interesting information from data streams and to
enable rapid configuration and steering of instruments to maxi-
mize information gained during scarce experimental time. Tight
coupling with powerful computing resources, such as data cen-
ter clusters, high-performance computing (HPC), or artificial
intelligence (AI) accelerators, is often needed both to process
this fire hose of data and to enable real-time feedback to
experiments.

Such coupling requires flexible methods for coordinating ac-
tions and resources across diverse experimental and computing
environments. We present common patterns for processing data
from scientific instruments and describe tools that enable conve-
nient specification of high-level flows linking diverse actions and
the flexible mapping of such flows onto diverse physical re-
sources to meet reliability, scalability, timeliness, and security
goals as an experiment runs. (We use the term flow rather than
the over-used workflow to emphasize our interest in capturing
specialized data-processing patterns associated with scientific
instrumentation.) Specifically, we (1) identify common patterns
encountered when scientists develop and run online data pro-
cessing flows; (2) show how Globus automation services16,17

can be used to capture such patterns; (3) present experiences
applying such methods in five different application scenarios;
and (4) examine the implications of such flows for both
computing and experimental facilities.

RESULTS

Patterns for integration of instruments and computing
Exponential growth in the rate at which instruments can
perform measurements requires corresponding exponential
improvements in the speed at which the resulting data are
processed. This means increasing use of automation and
computation at every stage in the experimental process,
including steps that were previously not rate limiting and
thus could be performed manually, such as recording and in-
terpreting results and configuring the next experiment. New
methods may be needed to capture data at high rates, extract
interesting events in high rate streams, identify and filter out
uninteresting phenomena, detect and/or correct errors,
design further experiments, and perform simulations to
choose between alternative experimental configurations—
and to combine many such steps into automated experiment
management flows.

As in other areas of design, the identification of recurring pat-
terns18,19 can contribute to cost reduction and performance
improvement. A design pattern captures a solution to a problem
or class of problems in a reusable form via documentation of its
purpose/intent, applicability, solution structure, and sample im-
plementations. In this section, we enumerate patterns we and
others have observed when processing data from scientific in-
struments and review the nature of the resources required to
implement the patterns.
What: Actions that are frequently included in flows
Data collection. Data collection captures data and associated
metadata generated at high speeds, in unconventional formats,
and on specialized devices and makes those data available to
subsequent analyses.

Data reduction. Data reduction reduces the volume of data to
be processed and/or stored in other steps by applying either
general-purpose compression20,21 or domain-specific feature
detection (e.g., to find diffraction peaks in X-ray imaging22,23).
Data inversion. Sophisticated computations are often required
to convert sensor data into useful forms: for example, to
generate a three-dimensional (3D) or 4D representation from
multiple 2D images24,25 or a 2D image from diffraction patterns.
This step may be performed incrementally while data are
collected or after all data are available.
Machine-learning (ML) model training. In this increasingly pop-
ular approach to data reduction, previously collected data (from
current or prior experiments and/or simulations) are used to train
ML models to recognize interesting phenomena for data reduc-
tion or rapid response.26–30

Experiment steering. Even better than discarding uninteresting
data is to collect only interesting data in the first place. Scientists
may use analyses of results from current or prior experiments to
determine what experiment or measurement to perform next.
Steering can range from fine-grained control of apparatus,
such as taking (more) data from one part of a sample, to
coarse-grained (e.g., choosing the next sample). Experiment
steering can use design of experiment methods or more sophis-
ticated active learning,31 Gaussian processes,32 Bayesian opti-
mization,33 reinforcement learning,34 or other methods.
Coupled simulation. Computational simulation can be used
during experiment steering to eliminate (or prioritize) experi-
mental configurations.
Data storage and publication. A flowmay include steps to orga-
nize and store data and associated metadata (e.g., concerning
experimental sample, configuration of apparatus, data process-
ing steps) so as to make it findable, accessible, interoperable,
and reusable (FAIR).35

Where: Alternative places to perform flow tasks
Analysis methods such as those just described can easily over-
whelm instrument computers. Indeed, some analyses can
consume tens or even hundreds of thousands of cores,36,37

albeit typically in a bursty manner. Similarly, experiments can
generate petabytes. The aggregate compute and storage de-
mand across a research institution or multi-instrument research
facility can be large, and shared (rather than per-instrument)
computing facilities become attractive or even essential to
exploit economies of scale in capital and operations costs.
A public cloud is a credible option for certain instrument work-

loads,38 but data center systems can be more cost effective,39

especially when high-capacity, low-latency networks can sup-
port high data rate instruments and experiment steering. Custom
silicon may be required for certain data processing steps.40,41

Specialized accelerators may be used for tasks such as ML
model training and inference.42–44

When demand outstrips supply, adaptive methods may be
used to direct compute and storage requests to different re-
sources, prioritize certain tasks, and substitute alternative
computational methods. In effect, computation may occur
across a computing continuum45–47 that extends from data
acquisition computers co-located with experiments to power-
ful clusters in data centers. For a given flow, computation may
occur at multiple points across this continuum. For example,
rapid quality control may be executed near an instrument on

ll
OPEN ACCESS Article

2 Patterns 3, 100606, October 14, 2022

a co-located device, machine-learning (ML) training on
specialized AI hardware, and large-scale reconstruction on a
data center cluster. The ‘‘best’’ location for a computation
can be hard to determine and may change over time accord-
ing to data location, resource availability, cost, and
performance.
Example realizations of patterns
The two flows in Figure 1, to be described in more detail in
application experiences, illustrate some of the elements just
described. Serial synchrotron crystallography (SSX) experi-
ments collect diffraction data from target crystals. Several
flows combine to process batches of acquired images, identify
‘‘hits,’’ refine crystal structures, and catalog results for later
use. High-energy diffraction microscopy (HEDM) is used to
characterize polycrystalline microstructures. This flow uses ac-
quired data to train a neural network model for detecting peak
positions in raw data. After training on a suitable AI accelerator,
the flow transfers the trained model to the instrument for on-
line use.

Implementing flows with the Globus platform
Having reviewed patterns for coupling experimental facilities
with computation, we now examine how these patterns may
be realized in practice, with the goal of providing actionable in-
formation that readers can apply to develop and execute their
own flows.
We believe strongly that the widespread integration of scienti-

fic instruments into computational flows requires reusable flow
specifications that can be easily adapted to different applica-
tions, instruments, and computational environments. Thus, our
chosen approach to flow authoring and execution combines
automation services for the specification and execution of flows
with a research automation fabric to enable decoupling of ab-
stract automation actions (e.g., move data, run program, publish
records) from the specifics of individual data stores, computers,
and catalogs—so that, for example, different compute and
storage tasks can be directed to different resources (e.g., data
center cluster, cloud, local accelerator) depending on needs
and availability. In the following, we describe these two sets of
capabilities in turn. For concreteness in presentation, we employ

capabilities provided by the Globus platform,48 which address
both sets of needs.
The Globus research automation fabric
TheGlobus platform comprises a set of cloud-hosted services to
which users can make various requests: for example, to transfer
data from one storage system to another, run a computation on a
computer, and load or search data in a catalog. In each case, the
appropriate cloud service handles details such as authentica-
tion, authorization, monitoring of progress, and retries on failure
that would otherwise hinder a scientist’s work. We leverage the
following Globus services:

d IAM services (Auth, Groups) for single sign-on and man-
agement of identities and credentials and delegation.

d Data services (Transfer, HTTPS, Share) for access to, and
managed movement of, files.

d Metadata management (Search, Identifiers) for indexing
and generating persistent references to data.

d Compute services (funcX, OAuthSSH) for invocation and
management of computational tasks.

d Automation services (Flows, Triggers, Queues) for execu-
tion of flows and related activities.

The Globus Transfer49 and funcX50 services interact with local
proxy agents deployed on storage systems and computers,
respectively: Globus collections (implemented by Globus Con-
nect software) for data actions, and funcX endpoints (imple-
mented by funcX software) for compute actions. These agents
are deployed persistently at many experimental and computa-
tional facilities and can also be deployed as needed by scien-
tists. The Globus cloud services plus the proxy agents imple-
ment a universal compute and data fabric that encompasses
any and all resources on which agents are deployed—in aggre-
gate, tens of thousands of resources at thousands of institutions
worldwide, ranging from cloud providers to clusters, supercom-
puters, and AI accelerators. Searchable registries support the
discovery of agents that a user has permission to access.
All Globus platform services leverage the Globus Auth security

fabric51 for management of user identities and credentials, gen-
eration of OAuth 2 access tokens52 for programmatic invocation
of services, and generation of delegation tokens that allow

Figure 1. Two examples of instrumentation + computation applications, showing constituent flows
Left: serial synchrotron crystallography; right: high-energy diffraction microscopy. In each, a variety of computing systems (including, on the right, a Cerebras AI

accelerator) are used to enable rapid collection and analysis of data from synchrotron light source experiments. In each subfigure, we show, as directed acyclic

graphs linking distinct actions, both the distinct flows used to automate different functions (above) and their deployment in the context of the applications (below).

The callouts indicate quality of service requirements.

ll
OPEN ACCESSArticle

Patterns 3, 100606, October 14, 2022 3

services to act on a user’s behalf. Crucially, data and computa-
tion remain at the edge: they never reach the cloud. Globus
high-assurance service levels allow for management of pro-
tected (e.g., HIPAA) data.
Globus automation services
Globus automation services—Globus Flows, Triggers, and
Queues16—build on the fabric provided by Globus platform ser-
vices to allow scientists to specify and execute sequences of ac-
tions (or, sometimes, choices) called flows. A flow is specified as
a JSON document—or, as described below, by using a Python
toolkit, Gladier (for Globus Architecture for Data-Intensive Exper-
imental Research). Flow execution may be invoked explicitly by
the scientist or be triggered by an external event, such as gener-
ation of new data at an instrument. The Globus Flows service
then manages flow execution. A web interface allows users to
monitor the progress of a flow’s execution and to detect and di-
agnose errors (see Figure S1).

Figure 2 shows an example flow and provides more details
on how flows are implemented. Each type of action that
may be invoked in a flow is handled by a persistent action
provider service. Action providers can run programs (funcX,50

OAuthSSH53), transfer files (Globus Transfer49,54), publish
data to catalogs (Globus Search55), manage data permissions
(Globus Share56), and generate persistent identifiers (Globus
Identifiers57), among other tasks relevant to instrument data
processing. In general, an action provider implements flow ac-
tions by requesting that the appropriate service (e.g., Globus
Transfer, funcX) initiate the action and then polling periodically
to see whether the action has completed. (As we discuss later,
this polling can be a source of overhead.) All action provider
services implement a consistent, asynchronous REST API,58

facilitating the integration of new activities. Additional action
providers may be deployed to support specific instruments,
compute resources, or provide other customized needs by
adhering to a well-defined interface.16

The implementation of Globus-operated action services,
like those of other Globus platform services, leverages cloud
services (e.g., Amazon Lambda, Step Functions, Simple
Queue Service) for reliability and scalability. Cloud-based
hosting enables delivery of research process automation ca-
pabilities to a wide user base without requiring users to down-
load and install software. It also provides economies of scale,

thereby reducing the costs associated with distributing
software.
The Gladier toolkit
We have developed a Python toolkit, Gladier,59 to assist in the
authoring and management of flows for instrument science.
This toolkit defines wrapper functions for registering funcX
actions and flow definitions, invoking a new instance of a flow
(a ‘‘run’’) with specified inputs, and monitoring a specified direc-
tory for file events. These functions allow for concise definitions
of flows that integrate instrument and computation, as shown in
Listing 1.
A Gladier user deploys client libraries on remote sources (e.g.,

on a computer co-located with an experiment) to detect events
and invoke flows. A Gladier tool definition, implemented as a
Python object, provides the information needed to populate a
flow action. The Gladier toolkit provides implementations of
common tools (e.g., transfer) as well as examples for experi-
ment-specific tools (e.g., Stills processing with the Diffraction
Integration for Advanced Light Sources [DIALS] package60);
users may add other tools by implementing the Python class.
To deploy and run a flow, users simply provide a list of tools to
be used along with specific flow input arguments. Gladier uses
this specification to register the necessary funcX functions and
create and then register the flow definition.
We observe that flows for different experiments tend to follow

similar patterns, independent of the experiment modality; the
major area of customization concerns application-specific func-
tions used to operate on data. Thus, scientists often can employ
an existing flow unchanged, simply specifying different compute
and data endpoint identifiers and storage paths; different pro-
cessing function(s); and a different Globus Search catalog for
publication. In other cases, they can adapt an existing flow by
adding and deleting tools from the description and writing and
deploying new funcX functions as required. Further, users can
create, version, and share custom tools via GitHub, making
them available for others to adopt within other flows.
The Gladier toolkit represents a relatively early attempt to pro-

vide a Pythonic interface to Globus Flows. Experiences thus far
have been positive. Nevertheless, we imagine that future appli-
cations will motivate extensions—for example, to simplify spec-
ification of conditional execution and input schemas, both sup-
ported in Globus Flows but not handled well in the current

Figure 2. A simple example flow and its
implementation
From top to bottom: (1) User perspective of a simple

flow that, successively (shown left to right),

(A) transfers data from an instrument to an analysis

computer, (B) runs an analysis, (C) asks a user to

review the analysis result, and, if (D) the user review

is positive, (E) publishes the data to a repository. (2)

The Globus platform services engaged by the

transfer, compute, query, and search action pro-

viders. (3) The resources interacted with by those

platform services: instrument storage system, co-

located analysis storage system and storage com-

puter, scientist, and data repository. Not shown are

the Globus Auth service that handles identities and

access tokens, and the Globus Flows service that

coordinates flow execution.

ll
OPEN ACCESS Article

4 Patterns 3, 100606, October 14, 2022

toolkit. We expect to develop other interfaces (e.g., web) to sup-
port other communities.

Application experiences
We use five instrument + computation applications to illustrate
how the patterns and technologies described in preceding sec-
tions can be realized and applied in practice. These applications
link a number of scientific instruments and computing facilities,
including Advanced Photon Source (APS) and Stanford
Synchrotron Radiation Lightsource (SSRL) beamlines and the
Argonne Leadership Computing Facility (ALCF).61 Each example
is implemented by using the Gladier toolkit to define, configure,
and manage one or more flows. For each, we provide pointers in
the supplemental information to the source code for both the full
application and a simplified implementation that can be run on a
personal computer, plus a sample dataset.
In each of the cases presented here, scientists had previously

employed manual and ad hoc methods to implement similar,
although typically simpler, behaviors: for example, by capturing
data locally, transferring data via portable media to a cluster, and
manually running analysis codes. After being introduced to Glad-
ier tools, they implemented, with varying degrees of assistance
from Gladier developers, the flows described in the following.
X-ray photon correlation spectroscopy (XPCS)
This experimental technique is used at synchrotron light sources
to study materials dynamics at the mesoscale/nanoscale by
identifying correlations in time series o ! f area detector im-
ages.62,63 Current detectors acquire megapixel frames at up to
2 kHz at 16-bit depth and 50 kHz at 2-bit depth (4 GB/s); next-
generation detectors are expected to generate tens of GB/s or
more.64,65 Computing correlations at these rates requires
powerful computing, both to process large quantities of data
and to enable rapid response for experiment feedback.
We describe a flow developed to automate the collection,

reduction, and publication of XPCS data at the APS 8-ID beam-
line. Each experiment can produce hundreds of thousands of im-
ages, with precise rate and image size controlled by the scientist.

During image acquisition, the instrument’s experiment manage-
ment system typically creates a data file for every 20,000 images,
with a size of !2.4 GB; to enable use of the automation services
described in this paper, it is configured to trigger a flow each time
such a file is created.
The flow, illustrated in Figure 3, comprises 10 steps: (1) copy

the experiment data file to a compute facility (transfer); (2)
extract metadata, such as data acquisition parameters and
processing instructions, from the experiment data file
(compute); (3) copy these metadata to persistent storage
(transfer); (4) load metadata into a Globus Search catalog,
providing visibility into the data that are being processed and
the software version and input arguments to be used during
subsequent processing steps (search); (5) run the XPCS Boost
correlation analysis function, a matrix-heavy operation that is
best run on a GPU (compute); (6) run a plotting function to
create correlation plots and compact images for display in
the portal (compute); (7) extract metadata from correlation plots
(compute); (8) aggregate the correlation plots, new metadata,
execution logs, and compact images for publication (compute);
(9) transfer the aggregated data and metadata to persistent
storage (transfer); and (10) add the aggregated metadata and
associated data references to the catalog entry created in
step 4, thus allowing the scientist to verify quality and also mak-
ing data available for future uses (search).
Before using this flow, it must be defined and registered with

the Globus Flows service, and any tools and infrastructure
used by the flow must be installed and configured if not already
in place. We describe these steps in some detail in the supple-
mental information so as to illustrate the process by which a
new flow is configured, deployed, and operated. A similar pro-
cess is required for each of the other applications described in
this section.
We note that while all computational steps (2, 5–9) can run on

general-purpose CPUs, step 6, XPCS Boost analysis, benefits
from the use of GPUs, and thus the flow, is typically configured
to access a funcX endpoint associated with a GPU resource.

Listing 1. A simple SSX analysis flow, as defined with the Gladier toolkit. The flow comprises two tasks, one for the transfer from
instrument to a compute resource, and one to run theDIALSStills processing function on the transferred data. For brevity, we useU1,
U2, and U3 and P1 and P2 to represent UUIDs and paths, respectively.

from gladier import GladierBaseClient
@generate_flow_definition
class SSXFlow (GladierBaseClient):
gladier_tools = [
’gladier_tools.tools.Transfer’,
’gladier_ssx.tools.DialsStills’

]
flow_input = {
’funcx_endpoint’: U1,
’transfer_source_endpoint_id’: U2,
’transfer_destination_endpoint_id’: U3,
’transfer_source_path’: P1,
’transfer_destination_path’: P2,

}
ssx_flow_client = SSXFlow ()
run_id = ssx_flow_client.run (flow_input)

ll
OPEN ACCESSArticle

Patterns 3, 100606, October 14, 2022 5

Using GPUs, the flow can process a dataset and produce visu-
alizations to the scientist in about 240 s (see Table 1) and in
around 50 s with dedicated resources.
SSX
SSX is a technique in which a bright synchrotron beam and
specialized apparatus are used to collect diffraction data from
many crystals, at rates of tens of thousands of images per
hour.66 It can collect diffraction data from samples at room tem-
perature and produce higher quality data than conventional crys-
tallography due to reduced radiation damage.67

At APS Sector 19, a typical SSX experiment generates around
40,000 1,475 3 1,255 16-bit pixel images per sample, with tens
of samples processed during a beamtime. While the detector is
capable of operating at 100 Hz, for a data rate of 370 MB/s, the
experiment is flux limited and is typically performed at roughly
10 Hz, or 37 MB/s. As images are produced, they are processed
(in batches) with the DIALS package to identify crystal lattices, or
hits, in each image. As hits are accumulated, they are processed
with the post-refinement and merging (PRIME) package68 to
solve the crystal structure. DIALS and PRIME outputs are pub-
lished to an SSX repository and cataloged for subsequent use.

These activities are implemented by three distinct flows.
The first, SSX-Stills, transfers a batch of acquired images to
a computing facility and uses the DIALS Stills package to
perform quality analysis on each image and identify those
that contain a good quality diffraction (a hit). It comprises 10
steps: (1) transfer image data from the beamline to a
computing facility (transfer); (2) confirm necessary input files
are present (compute); (3) create configuration files for anal-
ysis (compute); (4) perform DIALS Stills processing on each
raw image (compute); (5) extract metadata from files regarding
hits (compute); (6) generate visualizations showing the sample
and hit location (compute); (7) gather metadata and visualiza-
tions for publication (compute); (8) transfer metadata and visu-
alizations for publication (transfer); (9) ingest results, meta-
data, and visualizations to an SSX Globus Search catalog
(search); and (10) transfer the results back to the beamline
(transfer).
The SSX-Prime flow uses diffractions from SSX-Stills to solve

the crystal structure. This flow is run first when at least 1,000 hits
have been identified, and then again to refine the structure as
additional hits become available. It (1) performs PRIME analysis

Figure 3. Depictions of the flows presented in the paper
An x-ray photon correlation spectroscropy processing flow, XPCS; three serial synchrotron crystallography flows, SSX-Stills, SSX-Prime, and SSX-Publish; a

ptychography image reconstruction flow, Ptycho; a training flow for a neural network function approximator, BraggNN; and a high-energy diffraction microscopy

far-field reconstruction flow, HEDM. Text above each circle names the action; text below describes its application in the flow.

ll
OPEN ACCESS Article

6 Patterns 3, 100606, October 14, 2022

to solve the structure (compute) and (2) copies the structure back
to the beamline (transfer).
The SSX-Publish flow publishes results obtained to date, plus

derived data such as histograms, to a repository and catalog. Its
six steps are as follows: (1) gather results, metadata, and visual-
izations (compute); (2) create an archive file containing pro-
cessed data (compute); (3) create histograms of the analysis
(compute); (4) transfer metadata and results for publication
(transfer); (5) publish results to the SSX repository and
catalog (search); and (6) transfer results back to the beamline
(transfer).
These three flows are initiated by a local agent deployed at the

instrument that monitors the creation of files. In the experiments
reported here, an SSX-Stills flow is triggered for each of the 512
images and an SSX-Publish flow for each of the 4,096 images; an
SSX-Prime flow is triggered initially when at least 1,000 hits have
been identified, and then again after each SSX-Stills flow
completion. This flexibility allows each activity to proceed at an
appropriate pace and permits new flows to be triggered given
the result of previous flows, further advancing the automation
of the scientific process.
The result is an indexed, searchable collection of processed

images and associated statistics that is updated continuously
while an experiment is running. Scientists use this catalog to
determinewhether sufficient data have been collected for a sam-
ple, a second sample is needed to produce suitable statistics, or
a sample is not producing sufficient data to warrant continued
processing.69

Ptychography
This coherent diffraction imaging technique can image samples
with sub-20 nm resolutions.70 A sample is scanned with overlap-
ping beam positions while corresponding far-field diffraction
patterns, 2D small-angle scattering patterns containing fre-
quency information about the object, are collected with a pixe-
lated photon counting detector. Current detectors routinely
generate 1,030 3 514 12-bit pixel frames at 3 kHz for !20
Gbps71 and TBs per experiment. Next-generation detectors
will have readout speeds of more than 100 kHz and increased
pixel counts, resulting in multi-PB datasets.
Phase retrieval is applied to ptychography data to recover

phase information in reciprocal space. Typical phase retrieval al-
gorithms are iterative and hence computationally expensive.
ML-based methods that perform phase retrieval in a non-itera-
tive manner72–74 can achieve speedups of tens73 to thousands74

of times, opening the door to real-time imaging and thus auto-
mated steering of experiments. However, phase retrieval is high-
ly sensitive to material properties, and hence theMLmodel must
be retrained for each new material.
The Ptycho flow performs 2D inversion and phase retrieval on

diffraction patterns. It comprises three steps:75 (1) transfer data
from experimental facility to computing facility (transfer), (2) pro-
cess each diffraction pattern to obtain a full image (compute),
and (3) transfer intermediate results back to experimental facility
(transfer). During a ptychography experiment, hundreds of in-
stances of this flow can be initiated concurrently. Further, this
flow can be extended with 3D reconstruction steps and sci-
ence-specific AI/ML methods: for example, feature segmenta-
tion and event or phenomena detection to enable feedback
loops for experimental steering.
HEDM
This non-destructive technique combines imaging and crystal-
lography algorithms to characterize polycrystalline material
microstructure in three dimensions (3D) and under various in
situ thermo-mechanical conditions.22,76 The technique uses a
synchrotron beam to map grains in a polycrystalline aggregate
by considering diffraction patterns as a function of rotation
angle. It thus requires identification of diffraction ‘‘spots’’ for
each grain. Far-field (!10 mm) HEDM, near-field (!1 mm)
HEDM, and tomography may be combined when studying a ma-
terial,76 with, for example, far-field data used to guide near-field
measurements.
We present two distinct HEDM applications that implement

different approaches to HEDM data analysis. The first, HEDM,
involves flows for collection, analysis, and storage of far-field
and near-field data and for coordination of those activities. We
show in Figure 3 the first of these flows, which involves eight
steps: (1) transfer data from experimental facility to computing
facility (transfer); (2) process each raw image using MIDAS77

(compute); (3) extract metadata from files regarding hits (iden-
tified crystal diffractions) and generate visualizations showing
the sample and hit locations (compute); (4) process each set
of processed images (from step 2) to refine structure
(compute); (5) gather metadata (compute); (6) transfer meta-
data to storage facility (transfer); (7) publish raw data, meta-
data, and visualizations (search); and (8) transfer the results
back to the experimental facility (transfer). A single flow typi-
cally moves !11.5 GB and consumes !400 s of compute
time in steps 2 and 4.
The MIDAS package used by the HEDM application deter-

mines peak positions and shapes by fitting the observed inten-
sities in area detector data to a theoretical peak shape such as
pseudo-Voigt. While the HEDM flow presented allows scientists
to harness powerful computing for these computations, the
higher data rates at new experimental facilities greatly increase
overall computational costs.29 A promising alternative, explored
in our secondHEDMapplication, BraggNN, is to train and deploy
a neural network approximator to the conventional curve fitting
function. The neural network training can be performed on a
powerful data center computer (e.g., conventional cluster or AI
accelerator), after which the trained network can be deployed
on a lightweight ‘‘edge’’ device at the instrument for real-time
diffraction peak analysis to power applications such as experi-
ment steering and anomaly detection.

Table 1. For the instance of each flow with median runtime, the
times taken by its constituent transfer, compute, and search
action(s), in seconds, and the aggregate overhead, both in
seconds (OH) and as a percentage of total runtime (%OH)

Experiment Runtime Transfer Compute Search OH %OH

BraggNN 259.5 64 162.1 0 33.4 12.9

HEDM 498.2 16 405.9 1 75.3 15.1

Ptycho 2,283.3 11 2,259.4 0 13.0 0.6

SSX-Publish 355.2 3 306.2 1 44.9 12.7

SSX-Prime 332.6 152 53.7 0 126.9 38.2

SSX-Stills 1,041.4 97 860.0 1 83.4 8.0

XPCS 240.0 12 177.9 2 48.1 20.0

ll
OPEN ACCESSArticle

Patterns 3, 100606, October 14, 2022 7

The BraggNN flow, as shown in Figure 3, explores the feasibility
of this approach and, in particular, the relative costs of data trans-
fer, network training, and network deployment. It comprises just
four steps28,78: (1) copy data from beamline to computing facility
(transfer); (2) prepare the data for training (compute); (3) train the
BraggNN model (compute); and (4) copy the trained model back
to the beamline (transfer). In the experiments described below,
data are collected at SSRL and transferred to ALCF for training
on AI accelerators such as the Cerebras wafer-scale engine.79

The ease with which Gladier permits retargeting of compute tasks
proved invaluable when selecting an appropriate platform for
different neural network architectures.

Application usage
Scientists have employed the methods and tools described
above at APS and ALCF since early 2020 at a cadence that
has varied with instrument availability and research priorities
but that is generally increasing. Usage across the five experi-
ments described in this article, summarized in Figure 4, encom-
pass 49,367 distinct flow runs that consumed over 11,700 node
hours of compute and transferred roughly 108 TB. The variation
in usage across experiments and over time is primarily due to the
sporadic nature of experiments at large-scale facilities. There are
periods of downtime in which few, or no, experiments are run.
We see a general increase over time in the number of flows run
and the amount of data transferred. The decrease in compute
time in Q4 2021 is due to the fact that the compute-intensive pty-
chography experiment was not running during this period.
Several experiments are deploying more ambitious and expen-
sive computational methods now that the feasibility of on-de-
mand computing has been established.

We explore in Figure 5 the ability for flows to keep pace with
data acquisition rates. Specifically, we show a 12 h period in
which XPCS flows are executed during an experiment session.
During a preparatory period of roughly 4 h, the scientists run oc-
casional bursts of flows to calibrate equipment and ensure that
the analysis pipeline is operational. Here, we see up to 39 in-
stances of the XPCS flow executing concurrently, each with
the 11 steps shown in Figure 3. The subsequent 8 h of the exper-
iment represents steady-state processing in which flows are
executed as the result of data acquisition. We see here that
approximately 10 flows execute concurrently throughout the

experiment, showing that the flows meet the required data
acquisition rate of one file per minute. The additional flows repre-
sent out-of-band reprocessing tasks executed by the scientists.
We compare the runtime of each flow in Figure 6. Here, we see

mean and quartiles for the more than 2,600 flow runs. We see
that the Ptycho flow has significantly longer execution times
and also higher variance in execution time (25th to 75th percen-
tile is approximately 2,000 s) than other flows. This variance is
primarily due to unpredictable compute cluster queue delays,
as these flows were run without dedicated reservations. Impor-
tantly, flows complete reliably despite such delays.
We show in Figure 7 a breakdown of action execution time for a

single instance of each flow. We select the instance of that flow
with median total runtime and show the time spent executing
each action as measured by the respective action provider. We
illustrate overhead as the difference between the time measured
by the action provider to perform the task and the time recorded
by the Globus Flows service to complete a step. Overheads
include costs incurred asGlobusFlows transitions between steps,
invokes action providers to submit a task, and, most significantly,
polls for action status (see next paragraph). Flowdurations ranged
from a mean of 31 s for XPCS to 3,527 s for Ptycho. All except
SSX-Prime are compute bound. For SSX-Prime and some other
flows, the overheads (see Table 1) reveal opportunities for optimi-
zation (e.g., by improved polling strategies), but none are so high
as to hinder experiments.
Figure 8 drills down on the runtime and overhead of individual

steps within the XPCS flow. The histograms in the top row are of
runtimes for each of the flow’s 11 steps, over 2,197 flow execu-
tions; those in the bottom row are the associated per-step over-
heads. The varied performance seen in the runtime graphs for
transfer and compute actions is expected, as these actions
involve functions that may run for minutes and transfers that
move gigabytes and that are subject to compute cluster queue
and Globus Transfer limits, respectively. The similar distributions
seen in the runtime and overhead graphs for the same action are
due to the exponential backoff polling interval (starting at 1 s)
used by Globus Flows: the longer an action takes to execute,
the less frequently Globus Flows polls the action to check
completion. (The backoff maximum of 10 min is reflected in the
maximum overhead of roughly 500 s.) The two search actions
show more consistent performance (within 20 s), although still

Figure 4. Resource usage over time by five experiments
Total flows, data transferred, and compute time used (on 64-core ALCF Theta nodes), per quarter, for the five experiments described in application experiences.

ll
OPEN ACCESS Article

8 Patterns 3, 100606, October 14, 2022

with outliers. Roundtrip times to cloud services are not a signifi-
cant source of overhead for any action. These results show,
again, overheads that are acceptable for these applications
but with opportunities for optimization.

DISCUSSION

We discuss implications of the patterns and technologies
described here for various stakeholders. We base this discus-
sion on our experiences working with the five example applica-
tions described in application experiences, each of which use
the patterns and technologies outlined in this article to meet their
science needs.

Adopting patterns
The patterns presented in this article can be used to design and
implement instrument-linking applications using technologies
different than those presented here (i.e., they could be imple-
mented using other components). The patterns illustrate
common steps that are necessary for such use cases and outline
requirements for related systems. Implementations of these pat-
terns present concrete examples that can be reused and adapt-
ed to other use cases.

Adopting Globus and Gladier
The Gladier toolkit and Globus platform are publicly available
and accessible to the research community. Thus, users can
define new flows or adapt published flow templates that
implement common patterns, including those described
here. Our platform-based approach means that a user need
only ensure that Globus and funcX endpoints are in place
before running a flow in a new environment. At many scientific
facilities, required endpoints are already deployed, in which
case users need only modify a template to specify endpoints,
data locations, and compute functions. In environments where
endpoints are not already available, users must first deploy
the endpoint software to make their resources accessible—a
relatively straightforward task as Globus Transfer endpoint
software is distributed in native Linux packages and for
MacOS and Windows PCs, while funcX endpoint software
can be installed via Python pip (Package Installer for Python).
A happy consequence of these low deployment costs and our

use of Python has been considerable diversity in our early
adopter community. For example, the flows described in
application experiences were authored by both computer
scientists and domain scientists, with little support from
our team.

Use of a cloud platform
Our use of Globus platform services for IAM, data, flow automa-
tion, and computation simplified the realization of the patterns
described here. Because Globus operates on a public cloud
with publicly accessible APIs and web interfaces, users can
readily start, monitor, and manage flows irrespective of where
they and where their flows are located. They also benefit from
the heightened reliability that results from outsourcing the man-
agement of multi-step flows spanning distributed resources to a
reliable cloud platform with replicated state. The cloud-hosted
services architecture also makes it easy for users to compose
flows in different ways to meet different needs, without the
need to apply monolithic software stacks.
The Globus platform’s use of web authentication and authori-

zation standards (e.g., OAuth 252) provides a rich IAM ecosystem
for managing the security of complex flows. This approach al-
lows users and resource owners to manage what actions are
performed and by whom and also supports the complexities of
real-world use cases. For example, Globus Auth allows for
secure integration with external tools (e.g., facility data manage-
ment systems) by using various OAuth 2 grant types (e.g., for
public clients), group-based community accounts for shared
computing access, and delegated authorizations for flows to
securely invoke external services.
The ease with which the platform can be extended to edge re-

sources by deploying data and compute agents (Globus collec-
tions and funcX endpoints, respectively) is important for use
cases that require edge computing. These lightweight and easily
installed agents offer crucial capabilities that allow execution of
actions on remote and diverse resources. They may be operated
by resource owners to support any authorized users or, alterna-
tively, deployed by an individual user to process their own re-
quests only.

Figure 5. The number of concurrent XPCS flows over a roughly 12 h
period, March 10–11, 2022
The initial peaks are burst tests before beginning the experiment; by 00:00, a

constant stream of data from the beamline is processed.

Figure 6. Distribution of runtimes for the seven flows discussed in
the text
Box plots show upper and lower quartiles, with whiskers to 1.53 the inter-

quartile range.

ll
OPEN ACCESSArticle

Patterns 3, 100606, October 14, 2022 9

While the Globus platform provides capabilities needed to
implement a broad range of flows, it does not (and cannot) offer
every capability desired by users. Thus, another advantage of
the platform model is that we are able to prescribe a common
asynchronous REST API and flexible OAuth-based IAM model
such that others can implement and integrate external actions
with the platform. This API and IAMmodel could be used to inte-
grate capabilities provided by other cloud-hosted research plat-
forms, such as Tapis28 and CILogon/CoManage.80 Integrating
other platforms is dependent on the need for platforms to ‘‘trust’’
one another so that authorization decisions can be routed to
different authorization servers. Adoption of common token
formats (e.g., SciTokens81) would further enable consuming
services and agents to validate assertions from different autho-
rization domains.

A potential disadvantage of cloud-based platforms such as
Globus is the need for continuous connectivity between
research facility and cloud, which introduces a new failure
mode and may not be permitted by cybersecurity policies.
We see such concerns declining due to the high availability,
reachability, and security of modern clouds but note that a
possible compromise is to use local computers for initial data
capture while leveraging the cloud platform for more advanced
capabilities.

Implications for computing facilities
Rapidly advancing and evolving experimental apparatus and
associated computational methods result in growing demands
for computing and storage. The appropriate combination of
custom silicon, edge computing, and data center computing
likely will evolve over the next decade and beyond; however, it
remains natural to turn to large computing facilities (e.g., data
centers, clouds) for both capacity and hardware specialization
(e.g., accelerators). Such facilities are natural rallying points for
data storage and organization coupled with close access to
compute resources. These needs are particularly important
given the adoption of new computing modalities, such as AI
and digital twins.82,83

The experiences reported here show the benefits of a plat-
form that permits easy redirection of tasks to different destina-
tions so that choices can be made based on user preferences
and/or institutional policies. However, enabling such redirec-
tion relies on facilities exposing interfaces for remote access
to data and computing, IAM infrastructure to enable seamless,
yet secure, access to such resources, and methods for
enabling access (e.g., to service accounts) without prior direct
trust relationships.
Even simple mechanisms can drive innovation. For example,

ScienceDMZs84 have enabled unobstructed data flows to/from
scientific computing facilities, deployment of user-managed
and Globus-accessible storage has allowed scientists to rapidly
collaborate using shared data, and support for container tech-
nologies has reduced barriers for porting applications between
systems.85 These mechanisms should all be universally adopted
by computing facilities to enable instrument + computa-
tion flows.
Our work has highlighted other capabilities that could

reduce barriers for linking instruments and advanced
computing.86 Flexible, on-demand access to computing ca-
pacity is needed to support bursty online workloads. The
modest computing demands associated with our five experi-
ments were satisfied at ALCF by a mix of backfill queue, stan-
dard queues, and reservations, but such capabilities may no
longer suffice as demands increase. Some sites operate
both specialized queues and dedicated and on-demand clus-
ters,87–89 but more flexible scheduling mechanisms are likely
needed. In high-demand situations, the ability either to transi-
tion automatically (through standardized and exposed IAM
infrastructure) to other computing facilities, including to the
commercial cloud (funcX supports provisioning of cloud in-
stances), without direct intervention from experimental scien-
tists could allow the scientists to stay focused on real-time
needs. New facility evaluation metrics are needed that
encompass not only utilization but also responsiveness for
real-time workloads.
Planning for future computing-enhanced experimental sci-

ence suffers from inadequate knowledge of future demand and
the cost-performance tradeoffs associated with meeting de-
mand in different ways. It will be important to establish system-
atic tracking of resource demand and availability at both
experimental and computing facilities. Also needed is a cohort
of staff with expertise in both experimental science and
computing to assist with the development, deployment, and
executing of flows such as those described here.

Implications for experimental facilities
Effective coupling of experimental and computational facilities
requires both modern computing infrastructure at experiments
and high-quality internal and external network connections;
many facilities still have deficiencies in these areas. Adoption
of the ScienceDMZ architecture84,90 is important so as to elimi-
nate bottlenecks in network paths. Experimental facilities must
support deployment of the Globus and funcX software needed
to integrate with the cloud-based compute and data fabric
described here. This is both a social and technical challenge. Ad-
ministrators must allow for policies that permit deployment and
provide for external connectivity, both to computing facilities

Figure 7. For the instance of each flow with median runtime, a time-
line for its constituent actions
The empty spaces between steps correspond to flow orchestration over-

heads. Note that the Ptycho analysis times are scaled to 50% (from 2,261 to

1,130 s total) so as to better show details in the other flows.

ll
OPEN ACCESS Article

10 Patterns 3, 100606, October 14, 2022

and to cloud-hosted platform services. Facilities must provision
hardware near instruments so that agents can be deployed close
to data sources. Work is also needed to integrate IAM ecosys-
tems. Many facility users are locked within a single IAM domain.
Adoption of federated IAM, such as that provided by Globus
Auth and adopted by a growing number of scientific computing
facilities, can integrate diverse IAM domains. By adopting stan-
dard mechanisms, facilities can make their identities accessible
to modern cloud platforms.
There are opportunities for yet more sophisticated integration.

For example, direct integration of the methods described here
with the software tools employed by scientists reduces barriers
for use by providing familiar interfaces to automation capabil-
ities. Flows can also be used to control experiments, a practice
that will require implementation of common APIs, perhaps align-
ing with the action provider API, for instruments and other
devices.
Full automation (without human intervention) will require that

experiments generate meaningful events that can be used to
trigger flow executions.91 In the applications reported here, flows
are triggered by mechanisms that monitor co-located file sys-
tems to integrate with beamline software. Other integrations
are possible, such as connecting with instrument control sys-
tems like EPICS,92 Bluesky,93 LabView,94 and ROS95 that allow
for generation of events.

Implications for scientists
Higher data acquisition rates, larger datasets, andmore complex
processing flows mean that scientists must increasingly
embrace automation to remain competitive. The outsourcing of
automation tasks to cloud-hosted platforms, as described
here, can simplify this transition by avoiding the need for larger
local hardware and software deployments. However, scientists
must be willing to trust external providers to handle mission-crit-
ical functionality. The growing reliance on cloud-hosted services
in our daily lives, coupled with their extreme availability and reli-
ability, helps to expedite this transition.
Adopting the patterns and methods proposed here requires

that scientists decouple traditionally monolithic workflows
into a series of discrete steps that may be executed separately.
This approach can improve understandability and make it
easier to substitute implementations for individual steps (e.g.,
to update an analysis routine) and to execute steps in more

preferable locations (e.g., in terms of cost, availability, and
performance).
We see increasing use of ML techniques for data analysis and

for selecting experiment configurations, samples, and pro-
cesses, with an increasing focus on completing the feedback
loop to enable automated steering of experiments. These devel-
opments make it yet more important to automate data capture
and cataloging so as to provide a clear provenance path when
data are used for ML model training.

Facilitating FAIR science
The methods described in this article can contribute to making
experimental data FAIR35,96 by making it easy to integrate data
publication into data acquisition and analysis flows. In the SSX,
HEDM, and XPCS examples presented here, data plus descrip-
tive metadata (expressed in an extensible schema based on that
of DataCite97) are published automatically to a Globus Search
catalog, with an auto-generated interactive portal (e.g., see Fig-
ure 9). These catalogs have been used to index collections con-
taining many terabytes in thousands of files. Trained models can
also be published.98

Related work
Specialized data processing systems have been developed in
fields such as high energy physics40 and very long baseline
interferometry.99 At the Large Hadron Collider, !1 PB/s data
streams are reduced by custom electronics and then pro-
cessed on a distributed computing grid with hundreds of
thousands of cores.40 More routine linking of instruments
with computers100–103 predates the Internet.104 Automation
has involved both experiment-specific code105,106 and
orchestration and analysis solutions targeted at specific
communities.107–110 However, none enable specification and
reuse of end-to-end flows as is done here.
Experimental facilities use control systems such as EPICS92 to

drive instruments and monitor experiments. Bluesky93 provides
Python interfaces for experiment control and data collection.111

These systems can be combined with analysis tools and work-
flow systems to process data as they are captured. Streaming
protocols can be used to expedite data movement.112,113

The Globus data fabric on which we build here is widely de-
ployed in the US and other countries.56 Other data sharing ap-
proaches, varying in scope, maturity, and adoption, include

Figure 8. Run time distributions in seconds
Distributions of run time (first row) and overhead (second row), in seconds, for each of the 11 steps in the XPCS flow.

MD, metadata.

ll
OPEN ACCESSArticle

Patterns 3, 100606, October 14, 2022 11

logistical networking,114 Rucio115 and StashCache116 in high en-
ergy physics, ELIXIR117 for the life sciences, PANdata118,119 and
EXPANDS120 for photon and neutron science, iRODS,121 and the
European Open Science Cloud.122

The term scientific workflow encompasses many technolo-
gies.123–125 Scientific workflow systems are commonly used to
orchestrate many-task computational campaigns126–128 that
may execute local programs or submit jobs to data center com-
puters. Research on workflow scheduling, execution, and
related problems has enabled impressive scale and perfor-
mance within individual systems or across multiple computers
under coordinated control.129,130 In contrast, the patterns that
are our focus engage many concerns besides orchestration of
compute jobs.131 We require methods for linking diverse activ-
ities and resource types, from computations on computers to ex-
periments on scientific instruments; integrating different
resource types; bridging authentication domains; managing
flows that may run for days or even weeks; and organizing and
arbitrating among collections of flows. These concerns motivate

our decision to build on the cloud-hosted Globus platform,48

which provides for robust orchestration of diverse activities
managed by purpose-specific agents that are already widely de-
ployed. (The TavernaWeb services orchestration platform, while
not cloud hosted, had similarities.132) The extensibility of the
Globus platform allows for the introduction of new non-compute
elements into flows and thus into the patterns realized by
these flows.
Bridging instruments and distributed computation requires ca-

pabilities for reliable and secure remote task submission. This
challenge motivated Grid computing133,134 and the superfacility
concept.135 Facilities have developed specialized interfaces for
remote job submission136,137 and for managing workloads on
and across systems.129,138 Remote execution has been inte-
grated with Jupyter notebooks.139–141 The ability to compute
anywhere enables users to leverage specialized computing
resources designed for low-cost, distributed, and edge
computing.142 AI systems deployed at experimental facilities
support rapid data filtering at the edge.28

Figure 9. SSX data analysis portal
Facets on the left allow for selection of different proteins (nsp10nsp16 is selected here), chips, and creation dates. Search results, shown on the right, provide

researchers with a quick summary of the experiment and visual representation of the analysis results.

ll
OPEN ACCESS Article

12 Patterns 3, 100606, October 14, 2022

Domain-specific data repositories can play a pivotal role in
fostering collaboration.143–145 Science gateways146,147 address
data and compute challenges by abstracting underlying re-
sources and providing intuitive analysis interfaces.
The value of federated identity and single sign on as means

of streamlining access to scientific resources is broadly
recognized,148–151 although not yet universally adopted.
Globus Auth complements such initiatives by using OAuth to-
kens52 to delegate to third parties (e.g., a funcX server) the
right to perform certain tasks, such as transferring data and
running functions, on a user’s behalf. Delegation methods
have been developed previously.152–154

Summary
Maximizing the value obtained from new instruments requires
tight coupling with heterogeneous and large-scale computing fa-
cilities and new online computing methods to automate data
collection, processing, and dissemination. We have reported
on our experiences working with five groups of instrument scien-
tists, first to understand their current and future computing chal-
lenges and second to automate various of their research flows.
We described an automation approach that leverages Globus
platform services to enable construction of flows by composing
modular components that execute programs, transfer files, pub-
lish data to catalogs, manage data permissions, and generate
persistent identifiers, among other tasks. Importantly, given dy-
namic resource availability, our approach achieves a separation
of concerns between what actions are applied in each flow and
where those actions are performed.We also describedGladier, a
Python toolkit that abstracts registration of funcX functions, flow
authoring, and flow execution with specific input arguments and
simplifies the coupling of such flows to experiments.
The five experiments discussed here vary significantly in their

data rates, flow and action runtimes, use of heterogeneous re-
sources, and geographically distributed execution. We provide
quantitative evaluations of those differences and demonstrate
that ourmethods can, in each case, support the robust, scalable,
and performant execution required for production use, with
overheads that are acceptable even for complex and long-
running flows.
This work represents a first step towards identifying, and

capturing in reusable forms, a broad collection of patterns for
processing data from scientific instruments—patterns that range
from online data processing to ML training and data cataloging.
We believe that understanding these patterns and the methods
and resources required to support their execution will have
important implications for a range of stakeholders, from individ-
ual scientists to compute facilities, experimental facilities, and
cloud-based research platforms.

EXPERIMENTAL PROCEDURES

Resource availability
Lead contact

The lead contact is Ian Foster (foster@anl.gov).

Materials availability

This study did not generate new unique materials.

Data and code availability

In an effort to make this work accessible, reproducible, and reusable, we have

published, via Zenodo, archival snapshots of the following software refer-

enced in this article, at the time of publication: the Gladier toolkit155 and asso-

ciated tools;156 the five simplified Gladier applications described in the supple-

mental information (‘‘Gladier Examples’’);157 and full versions of the fiveGladier

applications described in the article, Gladier XPCS,158 Gladier HEDM,159 Glad-

ier Kanzus (SSX),160 Gladier BraggNN,161 and Gladier Ptychography.162 Each

of the provided Zenodo DOIs also provides a GitHub repository URL that may

contain more recent versions of the code. We also provide access to example

datasets163 for each simplified application through the Materials Data

Facility.164,165

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2022.100606.

ACKNOWLEDGMENTS

This work was supported in part by NSF grants OAC-1835890 and OAC-

2004894; award 70NANB14H012 from the US Department of Commerce,

National Institute of Standards and Technology, as part of the Center for Hi-

erarchical Material Design (CHiMaD); and by the US Department of Energy

under contract DE-AC02-06CH11357, including by the Office of Advanced

Scientific Computing Research’s Braid project. We are grateful to staff at

the APS, ALCF, University of Chicago Globus group, and SSRL for assis-

tance with this work.

AUTHOR CONTRIBUTIONS

Software, R.V., R.C., N.D.S., and J.P.; investigation, R.V., R.C., N.D.S., T.B.,

A.L., Z.L., and S.N.; writing – review & editing, R.V., R.C., B.B., J.P., M.E.P.,

K.C., and I.T.F.; writing – original draft, K.C. and I.T.F.; conceptualization,

R.C., B.B., M.E.P., N.S., K.C., and I.T.F.; project administration, B.B., N.S.,

and I.T.F.; methodology, B.B. and I.T.F.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 16, 2022

Revised: August 7, 2022

Accepted: September 14, 2022

Published: October 14, 2022

REFERENCES

1. Davy, H. (1812). Elements of Chemical Philosophy, Part I, Volume 1

(Bradford and Inskeep).

2. White, A., Goldberg, K., Kevan, S., Leitner, D., Robin, D., Steier, C., and

Yarris, L. (2019). A new light for berkeley lab–the advanced light source

upgrade. Synchrotron Radiat. News 32, 32–36. https://doi.org/10.

1080/08940886.2019.1559608.

3. APS Upgrade. Visited May 1, 2022. https://www.aps.anl.gov/APS-

Upgrade.

4. Daukantas, P. (2021). Synchrotron light sources for the 21st century. Opt.

Photonics News 32, 32–39.

5. Chenevier, D., and Joly, A. (2018). ESRF: inside the extremely Brilliant

source upgrade. Synchrotron Radiat. News 31, 32–35. https://doi.org/

10.1080/08940886.2018.1409562.

6. Bostedt, C., Boutet, S., Fritz, D.M., Huang, Z., Lee, H.J., Lemke, H.T.,

Robert, A., Schlotter, W.F., Turner, J.J., and Williams, G.J. (2016).

Linac coherent light source: the first five years. Rev. Mod. Phys. 88,

015007. https://doi.org/10.1103/RevModPhys.88.015007.

7. Eberle, A.L., and Zeidler, D. (2018). Multi-beam scanning electron micro-

scopy for high-throughput imaging in connectomics research. Front.

Neuroanat. 12, 112. https://doi.org/10.3389/fnana.2018.00112.

ll
OPEN ACCESSArticle

Patterns 3, 100606, October 14, 2022 13

8. Bai, X.C., McMullan, G., and Scheres, S.H.W. (2015). How cryo-EM is

revolutionizing structural biology. Trends Biochem. Sci. 40, 49–57.

https://doi.org/10.1016/j.tibs.2014.10.005.

9. Andreoni, I., and Cooke, J. (2017). The deeper wider faster programme:

Chasing the fastest bursts in the universe. Proc. Int. Astron. Union 14,

135–138. https://doi.org/10.1017/S1743921318002399.

10. Catlett, C., Beckman, P., Ferrier, N., Papka, M.E., Sankaran, R., Solin, J.,

Taylor, V., Pancoast, D., and Reed, D. (2022). Hands-on computer sci-

ence: the array of things experimental urban instrument. Comput. Sci.

Eng. 24, 57–63. https://doi.org/10.1109/MCSE.2021.3139405.

11. Flores-Leonar, M.M., Mejı́a-Mendoza, L.M., Aguilar-Granda, A.,

Sanchez-Lengeling, B., Tribukait, H., Amador-Bedolla, C., and Aspuru-

Guzik, A. (2020). Materials acceleration platforms: on the way to autono-

mous experimentation. Curr. Opin. Green Sustain. Chem. 25, 100370.

https://doi.org/10.1016/j.cogsc.2020.100370.

12. Steiner, S., Wolf, J., Glatzel, S., Andreou, A., Granda, J.M., Keenan, G.,

Hinkley, T., Aragon-Camarasa, G., Kitson, P.J., Angelone, D., and

Cronin, L. (2019). Organic synthesis in a modular robotic system driven

by a chemical programming language. Science 363, eaav2211. https://

doi.org/10.1126/science.aav2211.

13. Burger, B., Maffettone, P.M., Gusev, V.V., Aitchison, C.M., Bai, Y., Wang,

X., Li, X., Alston, B.M., Li, B., Clowes, R., et al. (2020). A mobile robotic

chemist. Nature 583, 237–241. https://doi.org/10.1038/s41586-020-

2442-2.

14. Wang, C., Steiner, U., and Sepe, A. (2018). Synchrotron big data science.

Small 14, 1802291. https://doi.org/10.1002/smll.201802291.

15. Rao, R. (2020). Synchrotrons face a data deluge. Phys. Today. https://

doi.org/10.1063/PT.6.2.20200925a.

16. Chard, R., Pruyne, J., McKee, K., Bryan, J., Raumann, B.,

Ananthakrishnan, R., Chard, K., and Foster, I. (2022). Research

Process Automation across the Space-Time Continuum. https://doi.

org/10.48550/arXiv.2208.09513.

17. Globus for Scientific Instruments. https://www.globus.org/instruments.

18. Alexander, C. (1977). A Pattern Language: Towns, Buildings,

Construction (Oxford University Press).

19. Gamma, E., Helm, R., Johnson, R.E., and Vlissides, J. (1995). Design

Patterns: Elements of Reusable Object-Oriented Software (Addison-

Wesley).

20. Cappello, F., Di, S., Li, S., Liang, X., Gok, A.M., Tao, D., Yoon, C.H., Wu,

X.C., Alexeev, Y., and Chong, F.T. (2019). Use cases of lossy

compression for floating-point data in scientific data sets. Int. J. High

Perform. Comput. Appl. 33, 1201–1220. https://doi.org/10.1177/

1094342019853336.

21. Vohl, D., Pritchard, T., Andreoni, I., Cooke, J., and Meade, B. (2017).

Enabling Near Real-Time Remote Search for Fast Transient Events

with Lossy Data Compression34 (Publications of the Astronomical

Society of Australia). https://doi.org/10.1017/pasa.2017.34.

22. Pokharel, R. (2018). Overview of high-energy x-ray diffraction

microscopy (HEDM) for mesoscale material characterization in

three-dimensions. In Materials Discovery and Design (Springer

International Publishing), pp. 167–201. https://doi.org/10.1007/978-

3-319-99465-9_7.

23. Liu, Z., Sharma, H., Park, J.S., Kenesei, P., Miceli, A., Almer, J.,

Kettimuthu, R., and Foster, I. (2022). BraggNN: fast X-ray Bragg peak

analysis using deep learning. IUCrJ 9, 104–113. https://doi.org/10.

1107/S2052252521011258.

24. Clackdoyle, R., and Defrise, M. (2010). Tomographic reconstruction in

the 21st century. IEEE Signal Process. Mag. 27, 60–80. https://doi.org/

10.1109/MSP.2010.936743.

25. Nashed, Y.S.G., Vine, D.J., Peterka, T., Deng, J., Ross, R., and

Jacobsen, C. (2014). Parallel ptychographic reconstruction. Opt

Express 22, 32082–32097. https://doi.org/10.1364/OE.22.032082.

26. Pelt, D., Batenburg, K., and Sethian, J. (2018). Improving tomographic

reconstruction from limited data using mixed-scale dense convolutional

neural networks. J. Imaging 4, 128. https://doi.org/10.3390/ji-

maging4110128.

27. Wasmer, K., Le-Quang, T., Meylan, B., Vakili-Farahani, F., Olbinado, M.,

Rack, A., and Shevchik, S. (2018). Laser processing quality monitoring by

combining acoustic emission and machine learning: a high-speed X-ray

imaging approach. Procedia CIRP 74, 654–658. https://doi.org/10.1016/

j.procir.2018.08.054.

28. Liu, Z., Ali, A., Kenesei, P., Miceli, A., Sharma, H., Schwarz, N., Trujillo, D.,

Yoo, H., Coffee, R., Layad, N., et al. (2021a). Bridging data center AI sys-

tems with edge computing for actionable information retrieval. In 3rd

IEEE/ACM Annual Workshop on Extreme-scale Experiment-in-

the-Loop Computing (IEEE), pp. 15–23. https://doi.org/10.1109/

XLOOP54565.2021.00008.

29. Li, J., Huang, X., Pianetta, P., and Liu, Y. (2021). Machine-and-data intel-

ligence for synchrotron science. Nat. Rev. Phys. 3, 766–768. https://doi.

org/10.1038/s42254-021-00397-0.

30. Konstantinova, T., Maffettone, P.M., Ravel, B., Campbell, S.I., Barbour,

A.M., and Olds, D. (2022). Machine learning enabling high-throughput

and remote operations at large-scale user facilities. Digital Discovery 1,

413–426. https://doi.org/10.1039/D2DD00014H.

31. Kusne, A.G., Yu, H., Wu, C., Zhang, H., Hattrick-Simpers, J., DeCost, B.,

Sarker, S., Oses, C., Toher, C., Curtarolo, S., et al. (2020). On-the-fly

closed-loop materials discovery via Bayesian active learning. Nat.

Commun. 11, 5966–6011.

32. Noack, M.M., Zwart, P.H., Ushizima, D.M., Fukuto, M., Yager, K.G.,

Elbert, K.C., Murray, C.B., Stein, A., Doerk, G.S., Tsai, E.H.R., et al.

(2021). Gaussian processes for autonomous data acquisition at large-

scale synchrotron and neutron facilities. Nat. Rev. Phys. 3, 685–697.

https://doi.org/10.1038/s42254-021-00345-y.

33. Zhang, Y., Xie, R., and Zhang, H. (2022). Autonomous Atomic

Hamiltonian Construction and Active Sampling of X-Ray Absorption

Spectroscopy by Adversarial Bayesian Optimization. https://doi.org/10.

48550/arxiv.2203.07892.

34. Maffettone, P.M., Lynch, J.K., Caswell, T.A., Cook, C.E., Campbell, S.I.,

and Olds, D. (2021). Gaming the beamlines—employing reinforcement

learning to maximize scientific outcomes at large-scale user facilities.

Mach. Learn, Sci. Technol. 2, 025025. https://doi.org/10.1088/2632-

2153/abc9fc.

35. Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J.J., Appleton, G., Axton,

M., Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne,

P.E., et al. (2016). The FAIR guiding principles for scientific data manage-

ment and stewardship. Sci. Data 3, 160018. https://doi.org/10.1038/

sdata.2016.18.

36. Hidayetoglu, M., Bicer, T., de Gonzalo, S.G., Ren, B., Gursoy, D.,

Kettimuthu, R., Foster, I.T., and Hwu, W.M.W. (2022). MemXCT: design,

optimization, scaling, and reproducibility of x-ray tomography imaging.

IEEE Trans. Parallel Distrib. Syst. 33, 2014–2031. https://doi.org/10.

1109/TPDS.2021.3128032.

37. McClure, J.E., Yin, J., Armstrong, R.T., Maheshwari, K.C., Wilkinson, S.,

Vlcek, L., Da Wang, Y., Berrill, M.A., and Rivers, M. (2020). Toward real-

time analysis of synchrotron micro-tomography data: accelerating

experimental workflows with AI and HPC. In Smoky Mountains

Computational Sciences and Engineering Conference (Springer),

pp. 226–239. https://doi.org/10.1007/978-3-030-63393-6_15.

38. Chard, R., Madduri, R., Karonis, N.T., Chard, K., Duffin, K.L., Ordoñez,

C.E., Uram, T.D., Fleischauer, J., Foster, I.T., Papka, M.E., and Winans,

J. (2018a). Scalable pCT image reconstruction delivered as a cloud ser-

vice. IEEE Trans. Cloud Comput. 6, 182–195. https://doi.org/10.1109/

TCC.2015.2457423.

39. Wang, S., and Casado, M. (2021). The Cost of Cloud, a Trillion Dollar

Paradox. https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-

cap-cloud-lifecycle-scale-growth-repatriation-optimization.

40. Bird, I. (2011). Computing for the large Hadron Collider. Annu. Rev. Nucl.

Part Sci. 61, 99–118. https://doi.org/10.1146/annurev-nucl-102010-

130059.

ll
OPEN ACCESS Article

14 Patterns 3, 100606, October 14, 2022

41. Hammer, M., Yoshii, K., and Miceli, A. (2021). Strategies for on-chip dig-

ital data compression for x-ray pixel detectors. J. Instrum. 16, P01025.

https://doi.org/10.1088/1748-0221/16/01/p01025.

42. Abeykoon, V., Liu, Z., Kettimuthu, R., Fox, G., and Foster, I. (2019).

Scientific image restoration anywhere. In 1st IEEE/ACM Annual

Workshop on Large-scale Experiment-in-the-Loop Computing (IEEE),

pp. 8–13. https://doi.org/10.1016/j.eng.2020.01.007.

43. Chen, Y., Xie, Y., Song, L., Chen, F., and Tang, T. (2020). A survey of

accelerator architectures for deep neural networks. Engineering 6,

264–274. https://doi.org/10.1016/j.eng.2020.01.007.

44. Deiana, A.M., Tran, N., Agar, J., Blott, M., Di Guglielmo, G., Duarte, J.,

Harris, P., Hauck, S., Liu, M., Neubauer, M.S., et al. (2022).

Applications and techniques for fast machine learning in science.

Front. Big Data 5, 787421. https://doi.org/10.3389/fdata.2022.787421.

45. Beckman, P., Dongarra, J., Ferrier, N., Fox, G., Moore, T., Reed, D., and

Beck, M. (2020). Harnessing the computing continuum for programming

our world. In Fog Computing: Theory and Practice (Wiley Online Library),

pp. 215–230. https://doi.org/10.1002/9781119551713.ch7.

46. Balouek-Thomert, D., Renart, E.G., Zamani, A.R., Simonet, A., and

Parashar, M. (2019). Towards a computing continuum: enabling

edge-to-cloud integration for data-driven workflows. Int. J. High

Perform. Comput. Appl. 33, 1159–1174. https://doi.org/10.1177/

1094342019877383.

47. Kumar, R., Baughman, M., Chard, R., Li, Z., Babuji, Y., Foster, I., and

Chard, K. (2021). Coding the computing continuum: Fluid function execu-

tion in heterogeneous computing environments. In IEEE International

Parallel and Distributed Processing Symposium Workshops (IEEE),

pp. 66–75. https://doi.org/10.1109/IPDPSW52791.2021.00018.

48. Ananthakrishnan, R., Chard, K., Foster, I., and Tuecke, S. (2015). Globus

platform-as-a-service for collaborative science applications. Concurr.

Comput. 27, 290–305. https://doi.org/10.1002/cpe.3262.

49. Allen, B., Bresnahan, J., Childers, L., Foster, I., Kandaswamy, G.,

Kettimuthu, R., Kordas, J., Link, M., Martin, S., Pickett, K., and Tuecke,

S. (2012). Software as a service for data scientists. Commun. ACM 55,

81–88. https://doi.org/10.1145/2076450.2076468.

50. Chard, R., Babuji, Y., Li, Z., Skluzacek, T., Woodard, A., Blaiszik, B.,

Foster, I., and Chard, K. (2020). FuncX: a federated function serving fab-

ric for science. In 29th International Symposium on High-Performance

Parallel and Distributed Computing (ACM), pp. 65–76. ISBN

9781450370523. https://doi.org/10.1145/3369583.3392683.

51. Tuecke, S., Ananthakrishnan, R., Chard, K., Lidman, M., McCollam, B.,

Rosen, S., and Foster, I. (2016). Globus Auth: a research identity and ac-

cess management platform. In IEEE 12th International Conference on e-

Science, pp. 203–212. https://doi.org/10.1109/eScience.2016.7870901.

52. Hardt, D. (2012). OAuth 2.0 Authorization Framework Specification.

http://tools.ietf.org/html/rfc6749.

53. Alt, J., Ananthakrishnan, R., Chard, K., Chard, R., Foster, I., Liming, L.,

and Tuecke, S. (2020). OAuth SSH with globus Auth. In Practice and

Experience in Advanced Research Computing (ACM), pp. 34–40. ISBN

9781450366892. https://doi.org/10.1145/3311790.3396658.

54. Liu, Z., Kettimuthu, R., Chung, J., Ananthakrishnan, R., Link, M., and

Foster, I. (2021b). Design and evaluation of a simple data interface for

efficient data transfer across diverse storage. ACM Trans. Model.

Perform. Eval. Comput. Syst. 6, 1–25. https://doi.org/10.1145/3452007.

55. Ananthakrishnan, R., Blaiszik, B., Chard, K., Chard, R., McCollam, B.,

Pruyne, J., Rosen, S., Tuecke, S., and Foster, I. (2018). Globus platform

services for data publication. In Practice and Experience on Advanced

Research Computing (ACM), pp. 1–7. ISBN 9781450364461. https://

doi.org/10.1145/3219104.3219127.

56. Chard, K., Tuecke, S., and Foster, I. (2014). Efficient and secure transfer,

synchronization, and sharing of big data. IEEE Cloud Comput. 1, 46–55.

https://doi.org/10.1109/MCC.2014.52.

57. Ananthakrishnan, R., Chard, K., D’Arcy, M., Foster, I., Kesselman, C.,

McCollam, B., Pruyne, J., Rocca-Serra, P., Schuler, R., and Wagner, R.

(2020). An open ecosystem for pervasive use of persistent identifiers.

In Practice and Experience in Advanced Research Computing (ACM),

pp. 99–105. ISBN 9781450366892. https://doi.org/10.1145/3311790.

3396660.

58. Fielding, R.T. (2000). Architectural Styles and the Design of Network-

Based Software Architectures (Irvine: Ph.D. thesis. University of

California).

59. Gladier team. Gladier Documentation. https://gladier.readthedocs.io.

60. Winter, G., Waterman, D.G., Parkhurst, J.M., Brewster, A.S., Gildea, R.J.,

Gerstel, M., Fuentes-Montero, L., Vollmar, M., Michels-Clark, T., Young,

I.D., et al. (2018). DIALS: implementation and evaluation of a new integra-

tion package. Acta Crystallogr. D Struct. Biol. 74, 85–97. https://doi.org/

10.1107/S2059798317017235.

61. Riley, K., Papka, M.E., Collins, J., Heinonen, N., Cerny, B., Kim, H., and

Wolf, L. (2019). Argonne Leadership Computing Facility Science Report

(Tech. Rep. Argonne National Laboratory).

62. Shpyrko, O.G. (2014). X-ray photon correlation spectroscopy.

J. Synchrotron Radiat. 21, 1057–1064. https://doi.org/10.1364/JOSAA.

375595.

63. Lehmk€uhler, F., Roseker, W., and Gr€ubel, G. (2021). From femtoseconds

to hours–measuring dynamics over 18 orders of magnitudewith coherent

x-rays. Appl. Sci. 11, 6179. https://doi.org/10.3390/app11136179.

64. Perakis, F., and Gutt, C. (2020). Towards molecular movies with x-ray

photon correlation spectroscopy. Phys. Chem. Chem. Phys. 22,

19443–19453. https://doi.org/10.1039/D0CP03551C.

65. Zhang, Q., Dufresne, E.M., Nakaye, Y., Jemian, P.R., Sakumura, T.,

Sakuma, Y., Ferrara, J.D., Maj, P., Hassan, A., Bahadur, D., et al.

(2021). 20 ms-resolved high-throughput x-ray photon correlation spec-

troscopy on a 500k pixel detector enabled by data-management work-

flow. J. Synchrotron Radiat. 28, 259–265. https://doi.org/10.1107/

S1600577520014319.

66. Diederichs, K., andWang, M. (2017). Serial synchrotron X-ray crystallog-

raphy (SSX). In Protein Crystallography (Springer), pp. 239–272. https://

doi.org/10.1007/978-1-4939-7000-1_10.

67. Nam, K.H. (2022). Serial x-ray crystallography. Crystals 12, 99. https://

doi.org/10.3390/cryst12010099.

68. Uervirojnangkoorn, M., Zeldin, O.B., Lyubimov, A.Y., Hattne, J.,

Brewster, A.S., Sauter, N.K., Brunger, A.T., and Weis, W.I. (2015).

Enabling x-ray free electron laser crystallography for challenging biolog-

ical systems from a limited number of crystals. Elife 4, e05421. https://

doi.org/10.7554/eLife.05421.

69. Wilamowski, M., Sherrell, D.A., Minasov, G., Kim, Y., Shuvalova, L.,

Lavens, A., Chard, R., Maltseva, N., Jedrzejczak, R., Rosas-Lemus, M.,

et al. (2021). 2’-O methylation of RNA cap in SARS-CoV-2 captured by

serial crystallography. Proc. Natl. Acad. Sci. USA e2100170118.

https://doi.org/10.1073/pnas.2100170118.

70. Maiden, A.M., Humphry, M.J., Zhang, F., and Rodenburg, J.M. (2011).

Superresolution imaging via ptychography. J. Opt. Soc. Am. Opt Image

Sci. Vis. 28 (4), 604–612. https://doi.org/10.1364/JOSAA.28.000604.

71. Deng, J., Preissner, C., Klug, J.A., Mashrafi, S., Roehrig, C., Jiang, Y.,

Yao, Y., Wojcik, M., Wyman, M.D., Vine, D., et al. (2019). The

Velociprobe: an ultrafast hard x-ray nanoprobe for high-resolution pty-

chographic imaging. Rev. Sci. Instrum. 90, 083701. https://doi.org/10.

1063/1.5103173.

72. Guan, Z., Tsai, E.H., Huang, X., Yager, K.G., and Qin, H. (2019).

PtychoNet: fast and high quality phase retrieval for ptychography. In

British Machine Vision Conference, p. 1172. https://doi.org/10.2172/

1599580.

73. Nguyen, T., Xue, Y., Li, Y., Tian, L., and Nehmetallah, G. (2018). Deep

learning approach for fourier ptychography microscopy. Opt Express

26, 26470–26484. https://doi.org/10.1364/OE.26.026470.

74. Cherukara, M.J., Nashed, Y.S.G., and Harder, R.J. (2018). Real-time

coherent diffraction inversion using deep generative networks. Sci.

Rep. 8, 16520. https://doi.org/10.1038/s41598-018-34525-1.

ll
OPEN ACCESSArticle

Patterns 3, 100606, October 14, 2022 15

75. Bicer, T., Yu, X., Ching, D.J., Chard, R., Cherukara, M.J., Nicolae, B.,

Kettimuthu, R., and Foster, I.T. (2021). High-performance

Ptychographic Reconstruction with Federated Facilities. https://doi.

org/10.48550/arxiv.2111.11330.

76. Bernier, J.V., Barton, N.R., Lienert, U., and Miller, M.P. (2011). Far-field

high-energy diffraction microscopy: a tool for intergranular orientation

and strain analysis. J. Strain Anal. Eng. Des. 46, 527–547. https://doi.

org/10.1177/0309324711405761.

77. MIDAS. Microstructural Imaging Using Diffraction Analysis Software.

https://www.aps.anl.gov/Science/Scientific-Software/MIDAS.

(Accessed 28 March 2022). Accessed.

78. Liu, Z.. Demo of workflows for rapid NN training using remote data center

AI systems. https://github.com/lzhengchun/nnTrainFlow. (Accessed 4

July 2022). Accessed.

79. Lauterbach, G. (2021). The path to successful wafer-scale integration:

the Cerebras story. IEEE Micro 41, 52–57. https://doi.org/10.1109/MM.

2021.3112025.

80. Basney, J., Fleury, T., and Gaynor, J. (2014). CILogon: A federated X.509

certification authority for cyberinfrastructure logon. Concurrency

Computat, Pract. Exper. 26, 2225–2239. https://doi.org/10.1002/

cpe.3265.

81. Withers, A., Bockelman, B., Weitzel, D., Brown, D., Gaynor, J., Basney,

J., Tannenbaum, T., and Miller, Z. (2018). SciTokens: capability-based

secure access to remote scientific data. In Practice and Experience on

Advanced Research Computing, pp. 1–8. https://doi.org/10.1145/

3219104.3219135.

82. Saracco, R. (2019). Digital twins: bridging physical space and cyber-

space. Computer 52, 58–64. https://doi.org/10.1109/MC.2019.2942803.

83. Niederer, S.A., Sacks, M.S., Girolami, M., and Willcox, K. (2021). Scaling

digital twins from the artisanal to the industrial. Nat. Comput. Sci. 1,

313–320. https://doi.org/10.1038/s43588-021-00072-5.

84. Dart, E., Rotman, L., Tierney, B., Hester, M., and Zurawski, J. (2014). The

Science DMZ: a network design pattern for data-intensive science. Sci.

Program. 22, 173–185. https://doi.org/10.1145/2503210.2503245.

85. Gerhardt, L., Bhimji, W., Canon, S., Fasel, M., Jacobsen, D., Mustafa, M.,

Porter, J., and Tsulaia, V. (2017). Shifter: Containers for HPC. Journal of

Physics: Conference Series, 898 (IOP Publishing), p. 082021. https://doi.

org/10.1088/1742-6596/898/8/082021.

86. Uram, T.D., and Papka, M.E. (2016). Expanding the scope of high-perfor-

mance computing facilities. Comput. Sci. Eng. 18, 84–87. https://doi.org/

10.1109/MCSE.2016.53.

87. Salim, M., Uram, T., Childers, J.T., Vishwanath, V., and Papka, M.E.

(2019). Balsam: near real-time experimental data analysis on supercom-

puters. In 1st IEEE/ACM Annual Workshop on Large-scale Experiment-

in-the-Loop Computing (IEEE), pp. 26–31. https://doi.org/10.1109/

XLOOP49562.2019.00010.

88. Hightower, K., Burns, B., and Beda, J. (2017). Kubernetes: Up and

Running Dive into the Future of Infrastructure, 1st ed. (O’Reilly Media,

Inc.). ISBN 1491935677, 9781491935675.

89. Giannakou, A., Blaschke, J.P., Bard, D., and Ramakrishnan, L. (2021).

Experiences with cross-facility real-time light source data analysis work-

flows. In IEEE/ACM HPC for Urgent Decision Making (IEEE), pp. 45–53.

https://doi.org/10.1109/UrgentHPC54802.2021.00011.

90. Chard, K., Dart, E., Foster, I., Shifflett, D., Tuecke, S., and Williams, J.

(2018b). The Modern Research Data Portal: a design pattern for net-

worked, data-intensive science. PeerJ. Comput. Sci. 4, e144. https://

doi.org/10.7717/peerj-cs.144.

91. Chard, R., Vescovi, R., Du, M., Li, H., Chard, K., Tuecke, S., et al. (2018c).

High-throughput neuroanatomy and trigger-action programming: a case

study in research automation. In 1st International Workshop on

Autonomous Infrastructure for Science, pp. 1–7. https://doi.org/10.

1145/3217197.3217206.

92. Experimental Physics and Industrial Control System (EPICS). https://

epics.anl.gov.

93. Allan, D., Caswell, T., Campbell, S., and Rakitin, M. (2019). Bluesky’s

ahead: a multi-facility collaboration for an a la carte software project

for data acquisition and management. Synchrotron Radiat. News 32,

19–22. https://doi.org/10.1080/08940886.2019.1608121.

94. Kodosky, J. (2020). LabVIEW. Proc. ACM Program. Lang. 4, 1–54.

https://doi.org/10.1145/3386328.

95. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,

Wheeler, R., and Ng, A.Y. (2009). ROS: an open-source Robot operating

system. In International Conference on Robotics and Automation,

Workshop on Open Source Software, 3, p. 5.

96. Brinson, L.C., Bartolo, L.M., Blaiszik, B., Elbert, D., Foster, I., Strachan,

A., and Voorhees, P.W. (2022). FAIR Data Will Fuel a Revolution in

Materials Research. https://doi.org/10.48550/arxiv.2204.02881.

97. DataCite Metadata Working Group (2021). DataCite Metadata Schema

for the Publication and Citation of Research Data and Other Research

Outputs. version 4.4. https://doi.org/10.14454/fxws-0523.

98. Ravi, N., Chaturvedi, P., Huerta, E., Liu, Z., Chard, R., Scourtas, A.,

Schmidt, K.J., Chard, K., Blaiszik, B., and Foster, I. (2022). FAIR

Principles for AI Models, with a Practical Application for Accelerated

High Energy Diffraction Microscopy. https://doi.org/10.48550/arXiv.

2207.00611.

99. Schuh, H., and Behrend, D. (2012). A fascinating technique for geodesy

and astrometry. J. Geodyn. 61, 68–80. https://doi.org/10.1016/j.jog.

2012.07.007.

100. Johnston, W.E., Greiman, W., Hoo, G., Lee, J., Tierney, B., Tull, C., and

Olson, D. (1997). High-speed distributed data handling for on-line instru-

mentation systems. In ACM/IEEEConference on Supercomputing (IEEE),

p. 55. https://doi.org/10.1145/509593.509648.

101. von Laszewski, G., Su, M.H., Insley, J.A., Foster, I., Bresnahan, J.,

Kesselman, C., Thiebaux, M., Rivers, M.L., Wang, S., Tieman, B., et al.

(1999). Real-time analysis, visualization, and steering of microtomogra-

phy experiments at photon sources. In 9th SIAM Conference on

Parallel Processing for Scientific Computing https://www.osti.gov/

servlets/purl/752879.

102. Goscinski, W.J., McIntosh, P., Felzmann, U., Maksimenko, A., Hall, C.J.,

Gureyev, T., Thompson, D., Janke, A., Galloway, G., Killeen, N.E.B., et al.

(2014). The multi-modal Australian ScienceS Imaging and Visualization

Environment (MASSIVE) high performance computing infrastructure: ap-

plications in neuroscience and neuroinformatics research. Front.

Neuroinform. 8, 30. https://doi.org/10.3389/fninf.2014.00030.

103. Toby, B.H., G€ursoy, D., De Carlo, F., Schwarz, N., Sharma, H., and

Jacobsen, C.J. (2015). Practices and standards for data and processing

at the APS. Synchrotron Radiat. News 28, 15–21. https://doi.org/10.

1080/08940886.2015.1013415.

104. Dessy, R.E. (1977). Computer networking: a rational approach to lab

automation. Anal. Chem. 49, 1100A–1108A. https://doi.org/10.1021/

ac50021a713.

105. Basu, S., Kaminski, J.W., Panepucci, E., Huang, C.Y., Warshamanage,

R., Wang, M., and Wojdyla, J.A. (2019). Automated data collection and

real-time data analysis suite for serial synchrotron crystallography.

J. Synchrotron Radiat. 26, 244–252. https://doi.org/10.1107/

S1600577518016570.

106. Khan, F., Narayanan, S., Sersted, R., Schwarz, N., and Sandy, A. (2018).

Distributed x-ray photon correlation spectroscopy data reduction using

Hadoop MapReduce. J. Synchrotron Radiat. 25, 1135–1143. https://

doi.org/10.1107/S160057751800601X.

107. Benecke, G., Wagermaier, W., Li, C., Schwartzkopf, M., Flucke, G.,

Hoerth, R., Zizak, I., Burghammer, M., Metwalli, E., M€uller-Buschbaum,

P., et al. (2014). A customizable software for fast reduction and analysis

of large x-ray scattering data sets: applications of the new DPDAK pack-

age to small-angle x-ray scattering and grazing-incidence small-angle

x-ray scattering. J. Appl. Crystallogr. 47, 1797–1803. https://doi.org/10.

1107/S1600576714019773.

108. G€ursoy, D., De Carlo, F., Xiao, X., and Jacobsen, C. (2014). TomoPy: A

framework for the analysis of synchrotron tomographic data.

ll
OPEN ACCESS Article

16 Patterns 3, 100606, October 14, 2022

J. Synchrotron Radiat. 21, 1188–1193. https://doi.org/10.1117/12.

2061373.

109. Deslippe, J., Essiari, A., Patton, S.J., Samak, T., Tull, C.E., Hexemer, A.,

Kumar, D., Parkinson, D., and Stewart, P. (2014). Workflowmanagement

for real-time analysis of lightsource experiments. In 9th Workshop on

Workflows in Support of Large-Scale Science (IEEE), pp. 31–40.

https://doi.org/10.1109/WORKS.2014.9.

110. Talirz, L., Kumbhar, S., Passaro, E., Yakutovich, A.V., Granata, V.,

Gargiulo, F., Borelli, M., Uhrin, M., Huber, S.P., Zoupanos, S., et al.

(2020). Materials Cloud, a platform for open computational science.

Sci. Data 7, 299–312. https://doi.org/10.1038/s41597-020-00637-5.

111. Olds, D., Allan, D.B., Caswell, T.A., Lynch, J., Maffettone, P.M., and

Campbell, S.I. (2021). Optimizing high-throughput capabilities by

leveraging reinforcement learning methods with the Bluesky suite. In

3rd IEEE/ACM Annual Workshop on Extreme-scale Experiment-in-

the-Loop Computing (IEEE), pp. 36–42. https://doi.org/10.1109/

XLOOP54565.2021.00011.

112. Buurlage, J.W., Marone, F., Pelt, D.M., Palenstijn, W.J., Stampanoni, M.,

Batenburg, K.J., and Schlep€utz, C.M. (2019). Real-time reconstruction

and visualisation towards dynamic feedback control during time-

resolved tomography experiments at TOMCAT. Sci. Rep. 9, 18379–

18411. https://doi.org/10.1038/s41598-019-54647-4.

113. Chung, J., Wisniewski, A., Zacherek, W., Liu, Z., Bicer, T., Kettimuthu, R.,

and Foster, I. (2022). SciStream: architecture and toolkit for data stream-

ing between federated science instruments. In 31st ACM International

Symposium on High-Performance Parallel and Distributed Computing,

pp. 185–198. https://doi.org/10.1145/3502181.3531475.

114. Beck, M., Moore, T., Plank, J., and Swany, M. (2000). Logistical

networking. In Active Middleware Services (Springer), pp. 141–154.

https://doi.org/10.1007/978-1-4419-8648-1_12.

115. Barisits, M., Beermann, T., Berghaus, F., Bockelman, B., Bogado, J.,

Cameron, D., Christidis, D., Ciangottini, D., Dimitrov, G., Elsing, M.,

et al. (2019). Rucio: scientific data management. Comput. Softw. Big

Sci. 3, 11–19. https://doi.org/10.1007/s41781-019-0026-3.

116. Weitzel, D., Zvada, M., Vukotic, I., Gardner, R., Bockelman, B., Rynge,

M., Fajardo Hernandez, E., Lin, B., and Selmeci, M. (2019).

StashCache: a distributed caching federation for the open science

grid. In Practice and Experience in Advanced Research Computing

(ACM), pp. 1–7. https://doi.org/10.1145/3332186.3332212.

117. Harrow, J., Drysdale, R., Smith, A., Repo, S., Lanfear, J., and Blomberg,

N. (2021). Providing a sustainable infrastructure for life science data at

European scale. Bioinformatics 37, 2506–2511. https://doi.org/10.

1093/bioinformatics/btab481.

118. Bicarregui, J., Matthews, B., and Schluenzen, F. (2015). PaNdata: open

data infrastructure for photon and neutron sources. Synchrotron

Radiat. News 28, 30–35. https://doi.org/10.1080/08940886.2015.

1013418.

119. PaNdata - the Photon and Neutron data infrastructure initiative. http://

pan-data.eu.

120. European Open Science Cloud (EOSC). Photon and Neutron Data

Service. https://expands.eu.

121. Xu, H., Russell, T., Coposky, J., Rajasekar, A., Moore, R., de Torcy, A.,

Wan, M., Shroeder, W., and Chen, S.Y. (2017). iRODS primer 2: inte-

grated Rule-Oriented data system. Synthesis Lectures on Information

Concepts, Retrieval, and Services 9, 1–131. https://doi.org/10.2200/

S00760ED1V01Y201702ICR057.

122. European Open Science Cloud. https://eosc-portal.eu.

123. Barker, A., and Hemert, J.v. (2007). Scientific workflow: a survey and

research directions. In International Conference on Parallel Processing

and Applied Mathematics (Springer), pp. 746–753. https://doi.org/10.

1007/978-3-540-68111-3_78.

124. Zhao, Y., Raicu, I., and Foster, I. (2008). Scientific workflow systems for

21st century, new bottle or newwine? In IEEE Congress on Services-Part

I (IEEE), pp. 467–471. https://doi.org/10.1109/SERVICES-1.2008.79.

125. Deelman, E., Gannon, D., Shields, M., and Taylor, I. (2009). Workflows

and e-Science: an overview of workflow system features and capabil-

ities. Future Generat. Comput. Syst. 25, 528–540. https://doi.org/10.

1016/j.future.2008.06.012.

126. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling,

P.J., Mayani, R., Chen, W., Ferreira da Silva, R., Livny, M., and

Wenger, K. (2015). Pegasus, a workflowmanagement system for science

automation. Future Generat. Comput. Syst. 46, 17–35. https://doi.org/

10.1016/j.future.2014.10.008.

127. Wilde, M., Foster, I., Iskra, K., Beckman, P., Zhang, Z., Espinosa, A.,

Hategan, M., Clifford, B., and Raicu, I. (2009). Parallel scripting for appli-

cations at the petascale and beyond. Computer 42, 50–60. https://doi.

org/10.1109/MC.2009.365.

128. Goecks, J., Nekrutenko, A., and Taylor, J.; Galaxy Team (2010). Galaxy: a

comprehensive approach for supporting accessible, reproducible, and

transparent computational research in the life sciences. Genome Biol.

11, R86. https://doi.org/10.1186/gb-2010-11-8-r86.

129. Thain, D., Tannenbaum, T., and Livny, M. (2005a). Distributed computing

in practice: the Condor experience. Concurrency Computat, Pract.

Exper. 17, 323–356. https://doi.org/10.1002/cpe.938.

130. Frey, J., Tannenbaum, T., Livny, M., Foster, I., and Tuecke, S. (2002). A

computation management agent for multi-institutional grids. Cluster

Comput. 5, 237–246. https://doi.org/10.1109/HPDC.2001.945176.

131. Stansberry, D., Somnath, S., Breet, J., Shutt, G., and Shankar, M. (2019).

DataFed: towards reproducible research via federated data manage-

ment. In International Conference on Computational Science and

Computational Intelligence (IEEE), pp. 1312–1317. https://doi.org/10.

1109/CSCI49370.2019.00245.

132. Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M.,

Carver, T., Glover, K., Pocock, M.R., Wipat, A., and Li, P. (2004).

Taverna: a tool for the composition and enactment of bioinformatics

workflows. Bioinformatics 20, 3045–3054. https://doi.org/10.1093/bioin-

formatics/bth361.

133. Foster, I., and Kesselman, C. (2011). The history of the grid. In High

Performance Computing: From Grids and Clouds to Exascale (IOS

Press), pp. 3–30. https://doi.org/10.48550/arxiv.2204.04312.

134. Shiers, J. (2007). The worldwide LHC computing grid (worldwide LCG).

Comput. Phys. Commun. 177, 219–223. https://doi.org/10.1016/j.cpc.

2007.02.021.

135. Enders, B., Bard, D., Snavely, C., Gerhardt, L., Lee, J., Totzke, B.,

Antypas, K., Byna, S., Cheema, R., Cholia, S., et al. (2020). Cross-facility

science with the superfacility project at LBNL. In 2nd IEEE/ACM Annual

Workshop on Extreme-scale Experiment-in-the-Loop Computing

(IEEE), pp. 1–7. https://doi.org/10.1109/XLOOP51963.2020.00006.

136. Cholia, S., Skinner, D., and Boverhof, J. (2010). NEWT: A RESTful service

for building High Performance Computing web applications. In Gateway

Computing Environments Workshop (IEEE), pp. 1–11. https://doi.org/10.

1109/GCE.2010.5676125.

137. Stubbs, J., Cardone, R., Packard, M., Jamthe, A., Padhy, S., Terry, S.,

Looney, J., Meiring, J., Black, S., Dahan, M., et al. (2021). Tapis: an

API platform for reproducible, distributed computational research. In

Future of Information and Communication Conference (Springer),

pp. 878–900. https://doi.org/10.1007/978-3-030-73100-7_61.

138. Nickolay, S., Jung, E.S., Kettimuthu, R., and Foster, I. (2021). Towards

Accommodating Real-Time Jobs on HPC Platforms. https://doi.org/10.

48550/arxiv.2103.13130.

139. Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M.,

Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., et al. (2016).

Jupyter notebooks – a publishing format for reproducible computational

workflows. In Positioning and Power in Academic Publishing: Players,

Agents and Agendas, F. Loizides and B. Schmidt, eds. (IOS Press),

pp. 87–90. https://doi.org/10.3233/978-1-61499-649-1-87.

140. Parkinson, D.Y., Krishnan, H., Ushizima, D., Henderson, M., and

Cholia, S. (2020). Interactive parallel workflows for synchrotron to-

mography. In 2nd IEEE/ACM Annual Workshop on Extreme-scale

ll
OPEN ACCESSArticle

Patterns 3, 100606, October 14, 2022 17

Experiment-in-the-Loop Computing (IEEE), pp. 29–34. https://doi.org/

10.1109/XLOOP51963.2020.00010.

141. Thomas, R., and Cholia, S. (2021). Interactive supercomputing with

Jupyter. Comput. Sci. Eng. 23, 93–98. https://doi.org/10.1109/MCSE.

2021.3059037.

142. Pordes, R., Petravick, D., Kramer, B., Olson, D., Livny, M., Roy, A., Paul

Avery, Kent Blackburn, Torre Wenaus, Frank W€urthwein, et al. (2007).

The open science grid. In Journal of Physics: Conference Series, 78

(IOP Publishing), p. 012057. https://doi.org/10.1088/1742-6596/78/1/

012057.

143. Jain, A., Ong, S.P., Hautier, G., Chen, W., Richards, W.D., Dacek, S.,

Cholia, S., Gunter, D., Skinner, D., Ceder, G., and Persson, K.A. (2013).

Commentary: the Materials Project: a materials genome approach to

accelerating materials innovation. Apl. Mater. 1, 011002. https://doi.

org/10.1063/1.4812323.

144. De Carlo, F., G€ursoy, D., Ching, D.J., Batenburg, K.J., Ludwig, W.,

Mancini, L., Marone, F., Mokso, R., Pelt, D.M., Sijbers, J., and Rivers,

M. (2018). TomoBank: a tomographic data repository for computational

x-ray science. Meas. Sci. Technol. 29, 034004. https://doi.org/10.1088/

1361-6501/aa9c19.

145. Blaiszik, B., Chard, K., Chard, R., Foster, I., and Ward, L. (2019a). Data

automation at light sources. AIP Conference Proceedings, 2054 (AIP

Publishing LLC), p. 020003.

146. Wilkins-Diehr, N., Gannon, D., Klimeck, G., Oster, S., and

Pamidighantam, S. (2008). TeraGrid science gateways and their impact

on science. Computer 41, 32–41. https://doi.org/10.1109/MC.2008.470.

147. Marru, S., Gunathilake, L., Herath, C., Tangchaisin, P., Pierce, M.,

Mattmann, C., Singh, R., Gunarathne, T., Chinthaka, E., Gardler, R.,

et al. (2011). Apache Airavata: a framework for distributed applications

and computational workflows. In ACM Workshop on Gateway

Computing Environments, pp. 21–28. https://doi.org/10.1145/2110486.

2110490.

148. Welch, V., Walsh, A., Barnett, W., and Stewart, C.A. (2011). A roadmap

for using NSF cyberinfrastructure with InCommon. In TeraGrid

Conference: Extreme Digital Discovery (ACM), p. 28. https://doi.org/10.

1145/2016741.2016771.

149. Atherton, C.J., Barton, T., Basney, J., Broeder, D., Costa, A., van Daalen,

M., Dyke, S., Elbers, W., Enell, C.-F., Fasanelli, E.M.V., et al. (2018).

Federated Identity Management for Research Collaborations. https://

doi.org/10.5281/zenodo.1307551.

150. Linden, M., Procházka, M., Lappalainen, I., Bucik, D., Vyskocil, P., Kuba,

M., Silén, S., Belmann, P., Sczyrba, A., Newhouse, S., et al. (2018).

Common ELIXIR service for researcher authentication and authorisation.

F1000Res. 7. https://doi.org/10.12688/f1000research.15161.1.

151. Umbrella. https://www.umbrellaid.org.

152. Gasser, M., and McDermott, E. (1990). An architecture for practical dele-

gation in a distributed system. In IEEE Computer Society Symposium on

Research in Security and Privacy (IEEE Computer Society), p. 20. https://

doi.org/10.1109/RISP.1990.63835.

153. Foster, I., Kesselman, C., Tsudik, G., and Tuecke, S. (1998). A security ar-

chitecture for computational grids. In 5th ACM Conference on Computer

and Communications Security, pp. 83–92. https://doi.org/10.1145/

288090.288111.

154. Welch, V., Foster, I., Kesselman, C., Mulmo, O., Pearlman, L., Tuecke, S.,

Gawor, J., Meder, S., and Siebenlist, F. (2004). X.509 proxy certificates

for dynamic delegation. 3rd Annual PKI R&D Workshop, 14.

155. Saint, N.D., Vescovi, R., Ryan, Jaligama, R.K., Kelly, D., Blaiszik, B., and

Foster, I. (2022a). globus-gladier/gladier: Gladier v0.7.1.post1. https://

doi.org/10.5281/zenodo.7042076.

156. Saint, N.D., Vescovi, R., Jaligama, R.K., Chard, R., Pruyne, J., Blaiszik,

B., and Foster, I. (2022b). globus-gladier/gladier-tools: Gladier Tools

v0.4.0.post1. https://doi.org/10.5281/zenodo.7042081.

157. Foster, I., Saint, N.D., Vescovi, R., Pruyne, J., Chard, R., and Blaiszik,

B. (2022). globus-gladier/gladier-patterns-examples-2022: Gladier

Examples - Cell Patterns Release v0.1.1. https://doi.org/10.5281/zen-

odo.7042063.

158. Vescovi, R., Saint, N.D., Parraga, H., Foster, I., Zhang, Q., Chard, R., Chu,

M., and Blaiszik, B. (2022a). globus-gladier/gladier-xpcs: Gladier XPCS -

Cell Patterns Release v0.1. https://doi.org/10.5281/zenodo.7042050.

159. Sharma, H., Vescovi, R., Chard, R., Saint, N., Blaiszik, B., and Foster, I.

(2022). globus-gladier/gladier-hedm: Gladier HEDM - Cell Patterns

Release v0.1. https://doi.org/10.5281/zenodo.7042054.

160. Vescovi, R., Chard, R., Saint, N.D., Blaiszik, B., and Foster, I. (2022b).

globus-gladier/gladier-kanzus: Gladier Kanzus - Cell Patterns Release

v0.1.1. https://doi.org/10.5281/zenodo.7042056.

161. Vescovi, R., Chard, R., Saint, N., Blaiszik, B., and Foster, I. (2022c).

globus-gladier/gladier-nntrain: Gladier NNTrain - Cell Patterns Release

v0.1.1. https://doi.org/10.5281/zenodo.7042065.

162. Vescovi, R., Chard, R., Saint, N., Blaiszik, B., and Foster, I. (2022d).

globus-gladier/gladier-ptycho: Gladier Ptychography - Cell Patterns

Release v0.1. https://doi.org/10.5281/zenodo.7044777.

163. Vescovi, R., Chard, R., Saint, N., Blaiszik, B., Pruyne, J., Bicer, T.,

Lavens, A., Liu, Z., Papka, M.E., Narayanan, S., et al. (2022e). Gladier -

Linking Scientific Instruments and Computation - Example Data.

https://doi.org/10.18126/17YW-EEHT.

164. Blaiszik, B., Chard, K., Pruyne, J., Ananthakrishnan, R., Tuecke, S., and

Foster, I. (2016). The Materials Data Facility: data services to advance

materials science research. JOM 68, 2045–2052. https://doi.org/10.

1007/s11837-016-2001-3.

165. Blaiszik, B., Chard, K., Chard, R., Foster, I., Ward, L., Pike, D., Chard, K.,

and Foster, I. (2019b). A data ecosystem to support machine learning in

materials science. AIP Conf. Proc. 9, 1125–1133. https://doi.org/10.

1063/1.5084563.

ll
OPEN ACCESS Article

18 Patterns 3, 100606, October 14, 2022

Patterns, Volume 3

Supplemental information

Linking scientific instruments and computation:

Patterns, technologies, and experiences

Rafael Vescovi, Ryan Chard, Nickolaus D. Saint, Ben Blaiszik, Jim Pruyne, Tekin Bicer, Alex
Lavens, Zhengchun Liu, Michael E. Papka, Suresh Narayanan, Nicholas Schwarz, Kyle
Chard, and Ian T. Foster

Globus Flows web interface

Scientists need to be able not only to run flows but to detect, diagnose, and
correct errors that may occur when a flow is executing. The Globus Flows
service that we use to run flows provides such capabilities, as we illustrate in
Figure S1, in which we (a) list recent runs, (b) inspect a summary of a run, and
(c, d) list all actions involved in that run; and (e, f) examine actions performed
in an unsuccessful run. Other displays, not shown here, allow for examination
of flow definitions and input schema.

Running simplified versions of our five example applications

The five applications described in the paper have been developed to process
big data streams from real light source instruments. To facilitate exploration,
we also provide simple versions of each application that can be configured to
run on a personal computer. These simplified versions are available on Zenodo
at doi:10.5281/zenodo.7042063 and also directly on GitHub1; the sample data
used in each is published on the Materials Data Facility at doi:10.18126/17YW-
EEHT. These simplified applications do not deal with publishing flow products
to a Globus Search catalog, and do not have an associated portal.

We first use a simplified version of the XPCS application described in the
body of the paper to illustrate how the Gladier toolkit is used to implement a
flow, and the process by which a flow is configured and run. Then, we provide
brief notes on each of the other simplified applications.

The simplified XPCS application

The simplified XPCS application, simple xpcs client.py,2 involves just three
steps, as follows:

Consider first the following lines of simple xpcs client.py:

4 from gladier import GladierBaseClient , generate_flow_definition
5 from tools.xpcs_boost_corr import BoostCorr
6 from tools.xpcs_plot import MakeCorrPlots
7
8
9 @generate_flow_definition

10 class XPCSBoost(GladierBaseClient):

1https://github.com/globus-gladier/gladier-patterns-examples-2022
2https://github.com/globus-gladier/gladier-patterns-examples-2022/blob/main/s

imple xpcs client.py

(a) The Runs tab in the Flows interface lists
runs that I can view or manage. The Library
tab lists flows that I can run.

(b) Selecting a run in Figure S1a gives this
status summary, with information on the run
(above) and the flow that was run (below).

(c) Selecting the Events tab in Figure S1b gives
this list of events during the run. We see that
all completed successfully.

(d) Selecting a single event in Figure S1c pro-
vides additional information about the associ-
ated action: PublishTransferSetPermission.

(e) The events list for an alternative, unsuc-
cessful run of the same flow indicates that an
PublishTransferSetPermission action failed.

(f) Drilling down on the erroneous event in Fig-
ure S1e reveals (arguably opaque) information
about the error: an invalid credential.

Figure S1: We use the example of an XPCS flow to illustrate how the Globus web interface
enables tracking of flow progress and diagnosing of errors.

11 gladier_tools = [
12 "gladier_tools.globus.transfer.Transfer:FromStorage",
13 BoostCorr ,
14 MakeCorrPlots ,
15]

Lines 11-15 of this code uses the Gladier toolkit to specify a flow comprising
the three tools shown in the figure:

1. A Transfer task to move data from a source storage location to a des-
tination storage location (line 12). In a real deployment, the source will
typically be a storage system associated with the scientific instrument and
the destination a storage system associated with the data center where the
analysis computer(s) are located.

2. A first Compute task to run the XPCSBoost Analysis program (line 13;
imported, as specified in line 5, from tools/xpcs boost corr.py3).

3. A second Compute task to run the Correlation Plots program (line 14;
imported, as specified in line 6, from tools/xpcs plot.py4).

Subsequent statements in simple xpcs client.py configure various param-
eters, including the UUIDs that identify the funcX endpoint that is to be
used to run the Compute tasks (analysis computer funcx id) and the source
and destination Globus collections (instrument computer collection id and
analysis computer collection id) for theTransfer task. A value is already
provided for instrument computer collection id, the source of the data to be
processed. Normally, this would be a storage system at the XPCS instrument,
but it is configured in simple xpcs client.py to be a collection that we have
established to store XPCS test data. Values are not provided, on the other hand,
for analysis computer collection id or analysis computer funcx id. We
will show in the next steps how to configure these on your personal computer.

When first initialized, this code generates a flow definition and registers it
with the Globus Flows service. It also registers the two funcX tools, BoostCorr
and MakeCorrPlots, with the funcX service. Subsequent invocations reuse the
registered flow and functions.

The simple xpcs client.py application is easy to run on your own com-
puter. The steps are:

1. Establish the destination Globus collection. As noted, the applica-
tion needs a value for analysis computer collection id, the identifier
of a Globus collection accessible from the computer on which analysis tasks
are to be executed. If no such collection is accessible to us, we can create a

3https://github.com/globus-gladier/gladier-patterns-examples-2022/blob/main/t
ools/xpcs boost corr.py

4https://github.com/globus-gladier/gladier-patterns-examples-2022/blob/main/t
ools/xpcs plot.py

new collection by installing and configuring Globus Connect Personal soft-
ware, as described online for Linux, MacOS, and Windows computers.5

We then record the UUID for the collection by setting it as the value of
analysis computer collection id in the simple xpcs client.py ap-
plication.

2. Specify the funcX endpoint. The application also needs a value for
analysis computer funcx id, the identifier of the funcX endpoint where
analysis tasks are to be executed. If no such endpoint is accessible to
us, we can create a new funcX endpoint on our personal computer by
installing and configuring the funcX software, as described in the repos-
itory’s README.md file.1 We then record the UUID for the funcX end-
point by setting it as the value of analysis computer funcx id in the
simple xpcs client.py application.

3. Configure execution environment on compute endpoint(s). The
funcX system that we use to implement Compute actions can run any
Python functions or containerized programs invokable from Python that
have been registered with the funcX service. We install programs that
cannot be thus registered (e.g., a non-containerized application) manually
prior to use, so that they may be invoked by Compute actions during
flow execution. Here we installed four such programs: the XPCS Boost
correlation analysis tool,6 CUDA Toolkit,7 PyTorch,8 and Gladier XPCS
repository,9 which includes custom plotting modules.

4. Run the application. We start the flow by executing the supplied
simple xpcs client.py. When first invoked, the user is prompted to
login and consent to the flow accessing the Transfer and funcX services.
The application provides a link to the Globus Flows service where the flow
can be monitored.

Other simplified applications

The simplified SSX application (specifically, a simplified version of the SSX-
Stills flow described in the paper10) implements a flow with four steps: a Trans-
fer from instrument to analysis computer followed by three Compute steps
that create a Phil-format11 input file for the DIALS Stills application, run DI-
ALS Stills, and run DIALS unit cell histogram, respectively.

5https://www.globus.org/globus-connect-personal
6https://github.com/AZjk/boost corr
7https://developer.nvidia.com/cuda-toolkit
8https://pypi.org/project/torch/
9https://github.com/globus-gladier/gladier-xpcs

10https://github.com/globus-gladier/gladier-patterns-examples-2022/blob/main/s
imple ssx client.py

11https://cci.lbl.gov/docs/cctbx/doc low phil/

The simplified HEDM application12 implements a flow with two steps: a
Transfer from instrument to computer and a Compute step that runs a
supplied shell script.

The simplified BraggNN application13 implements a flow with two steps:
a Transfer from instrument to computer, and a Compute step that runs a
supplied shell script.

The simplified Ptychography application14 implements a flow with three
steps: a Transfer from instrument to computer, and two Compute steps that
run a supplied shell script and the ptychodus plot tool,15 respectively.

The full applications and flows described in the paper

As noted in the Data and code availability section of the paper, source code
for the five applications described in this paper, plus information on how to run
them, is available via Zenodo and GitHub. These production applications di↵er
from our simplified applications in various ways. In particular, they:

• define separate funcX endpoints for non-compute-intensive and compute-
intensive Compute tasks, respectively (on an HPC system, these will
typically correspond to a login node vs. compute nodes); and

• publish descriptive metadata plus data references to a Globus Search cat-
alog, and establish an associated interactive data portal, so that users can
browse, search, and access flow products.

The following information on configuring and running one of these applications,
XPCS, is also relevant to the other applications. This application9 supports the
processing of XPCS data generated at the 8-ID beamline of the Advanced Pho-
ton Source (APS). The generation of spectroscopy data at 8-ID triggers a flow
that transfers data from 8-ID to ALCF for analysis, metadata extraction, and
visualization, and then publishes the processed data to an ALCF Community
Data Co-Op16 portal.

The Python program flow boost.py17 implements the flow described in the
paper, with the addition of a step 5 to preallocate nodes on the HPC resource, an
optimization that can accelerate flow start. Some notes about how to configure
the flow to run:

12https://github.com/globus-gladier/gladier-patterns-examples-2022/blob/main/s
imple hedm client.py

13https://github.com/globus-gladier/gladier-patterns-examples-2022/blob/main/s
imple braggnn client.py

14https://github.com/globus-gladier/gladier-patterns-examples-2022/blob/main/s
imple ptycho client.py

15https://github.com/globus-gladier/gladier-patterns-examples-2022/blob/main/t
ools/ptychodus plot.py

16https://acdc.alcf.anl.gov
17https://github.com/globus-gladier/gladier-xpcs/blob/main/gladier xpcs/flows/

flow boost.py

1. Configure infrastructure: The XPCS flow involves Transfer, Com-
pute, and Search actions.

• As the flow involves Transfer actions, we must ensure that Globus
collections are in place wherever data are to be accessed: in this
case, the APS 8-ID beamline and ALCF Eagle storage systems. As
Globus collections are already deployed in both locations as part of
their regular infrastructure, no action was required.

• As the flow involves Compute actions, we must ensure that funcX
endpoints are deployed wherever computation is to be performed:
in this case, the ALCF Theta computer. The endpoint must also
be configured to interface with the batch scheduler to appropriately
acquire nodes. Here, we define a Cobalt configuration using the ex-
ample in the funcX documentation.18

• As the flow involves Search actions, we must ensure that a Globus
Search index has been provisioned and a data portal deployed and
customized to visualise search records. The XPCS search index was
created via the Globus CLI.19 The XPCS data portal was imple-
mented by using the Django Globus Portal Framework,20 with cus-
tomization to display specific metadata, facets, and images. The
portal implementation and installation instructions are on Github.21

2. Configure execution environment on compute endpoint(s). As
with the simplified XPCS application, we install four programs that can-
not be registered automatically with the funcX service: the XPCS Boost
correlation analysis tool,6 CUDA Toolkit,7 PyTorch,8 and the Gladier
XPCS repository,9 which includes custom plotting modules.

3. Configure flow triggers. A trigger may be configured to invoke an
instance of a flow in response to data being generated. In this example,
instances of the flow are initiated by the APS Data Management System,22

which copies each batch of new images, as they are acquired, from the
instrument to storage accessible by Globus Transfer, and then starts an
instance of the flow.

18https://funcx.readthedocs.io/en/latest/endpoints.html#theta-alcf
19https://docs.globus.org/cli/reference/search index create/
20https://github.com/globus/django-globus-portal-framework
21https://github.com/globus-gladier/gladier-xpcs/tree/main/xpcs portal
22S. Veseli, N. Schwarz, C. Schmitz. “APS data management system,” Journal of Syn-

chrotron Radiation 25(5):1574-1580, 2018, https://doi.org/10.1107/S1600577518010056.

Other software referenced in, or relevant to, the paper

The Gladier Toolkit23,24 (see body of paper) is designed to accelerate and
simplify the implementation of new scientific flows for experimental facilities.
It provides a Pythonic interface for defining Globus flows and for managing the
registration and caching of flows and of funcX functions.

The supporting Gladier Tools25,26 package utility tools that can be incorpo-
rated into a flow, such as Transfer and Publication. Tools in this repository are
intended to be general purpose and reusable.

The Globus Python SDK27,28 provides a convenient Pythonic interface to
Globus web APIs, including the Globus Transfer API and Globus Auth API. It
is used extensively by the Gladier Toolkit and tools.

The Globus Automate CLI and SDK29,30 provides a command line in-
terface (CLI) and Python software development kit (SDK) for working with
Globus automation services, primarily Globus Flows, any service implementing
the Globus Action Provider interface, and Globus Queues.

The Globus Sample Data Portal31,32 implements a simple Web app frame-
work that illustrates how to build a data portal, such as those created for the
example applications presented in this paper, by using Globus services.

The Django Globus Portal Framework33,34 provides a modular framework
for building Globus-based data portals. It provides utilities for quickly building
a data portal around a Globus Search index, using Globus Auth to secure access
to data.

23https://github.com/globus-gladier/gladier; September 1, 2022 version archived at
https://doi.org/10.5281/zenodo.7042076

24https://gladier.readthedocs.io
25https://github.com/globus-gladier/gladier-tools; September 1, 2022 version

archived at https://doi.org/10.5281/zenodo.7042081
26https://gladier.readthedocs.io/en/latest/gladier tools
27https://github.com/globus/globus-sdk-python
28https://globus-sdk-python.readthedocs.io
29https://github.com/globus/globus-automate-client
30https://globus-automate-client.readthedocs.io
31https://github.com/globus/globus-sample-data-portal
32https://docs.globus.org/modern-research-data-portal
33https://github.com/globus/django-globus-portal-framework
34https://django-globus-portal-framework.readthedocs.io

