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Abstract

The idle computers on a local area, campus area, or
even wide area network represent a significant computa-
tional resource—one that is, however, also unreliable, het-
erogeneous, and opportunistic. We describe an algorithm
that allows branch-and-boundproblems to be solved in such
environments. In designing this algorithm, we faced two
challenges: (1) scalability, to effectively exploit the variably
sized pools of resources available, and (2) fault tolerance,
to ensure the reliability of services. We achieve scalabil-
ity through a fully decentralized algorithm, in which the dy-
namically available resources are managed through a mem-
bership protocol. We guarantee fault tolerance in the sense
that the loss of up to all but one resource will not affect the
quality of the solution. For propagating information reli-
ably, we use epidemic communication for both the member-
ship protocol and the fault-tolerance mechanism. We have
developed a simulation framework that allows us to evalu-
ate design alternatives. Results obtained in this framework
suggest that our techniques can execute scalably and reli-
ably.

1. Introduction

For solving new, more difficult search problems, sci-
entists need better search heuristics and/or more power-
ful resources. The need for hundreds or even thousands
of processors is justified in the case of branch-and-bound
search algorithms by problems that could not be solved af-
ter months of execution on tens of processors [7].

Rarely, however, are thousands of processors assembled
in a single location and available for a single problem. Thus,
techniques are needed that would allow us to aggregate
processors at many different Internet-connected locations.
These processors are likely often to be required for other

purposes; hence their availability will be episodic, and any
algorithm designed to take advantage of these resources
must be opportunistic. Furthermore, the Internet environ-
ment is likely to be unreliable and heterogeneous.

Various groups have demonstrated the feasibility of us-
ing Internet-connected computers for solving embarrass-
ingly parallel problems [24, 19]. In our work, we investi-
gate the feasibility of applying Internet-connected resources
to more tightly coupled problems, in which a centralized
scheme is not computationally efficient. Our approach is to
develop specialized algorithms that incorporate scalability
and reliability mechanisms.

For providing reliable services over unreliable architec-
tures, researchers usually choose one of the following ap-
proaches: (1) embed fault-tolerance mechanisms within the
middleware software layer, as in ISIS [2] or CORBA Trans-
action Service, or as in systems like Condor [22, 30] or Le-
gion [21]; or (2) embed fault-tolerance mechanisms within
algorithms. The former approach is more general. Suc-
cessful results in this domain guarantee communication and
hardware reliability to a large number of applications. But
its generality imposes problems that sometimes turn out to
be unsolvable [11, 3] or very expensive. The latter alterna-
tive is applicable to specific problem classes and is therefore
less general. But exploiting the characteristics of a class
of problems may ease the design of fault-tolerance mecha-
nisms, yielding simpler and more efficient algorithms. Note
that middleware can still be of assistance in this case, by
providing appropriate fault-detection services [25].

In order to avoid the high costs of general approaches in
achieving fault tolerance, in our work we focus on problem-
specific fault-tolerance mechanism. Specifically, we pro-
pose a fault-tolerant, totally distributed branch-and-bound
algorithm designed for unreliable architectures, with a dy-
namically variable number of resources. The novelty of
our work is the fully-decentralized fault-tolerance mecha-
nism that uses a tree-based encoding of the branch-and-



bound subproblems. The description of the branch-and-
bound problem (Section 2) and the target architecture (Sec-
tion 4) provide the motivation for our work. We describe
our branch-and-bound algorithm in Section 5, focusing par-
ticularly on the fault-tolerance mechanism. Because of
lack of space, related work (Section 3) refers only to fault-
tolerance techniques embedded in tree-based, distributed,
asynchronous algorithms. For testing our solution, we have
developed a simulation framework, which is presented in
Section 6, along with the results obtained. We conclude
with a discussion of what we learned from trying to solve
this problem and how we intend to continue this work.

2. Branch and Bound

The search for optimal solutions is one of the most im-
portant searching problems. Since exhaustive search is of-
ten impracticable in NP-hard problems, heuristics are em-
ployed to improve search performance. Branch-and-bound
(which we shall hereafter refer to as B&B) is an intelli-
gent search method often used for optimization problems.
It uses a successive decomposition of the original problem
into smaller disjoint subproblems, while reducing (pruning)
the search space by recognizing unpromising problems be-
fore starting to solve them.

A sequential B&B algorithm consists of a sequence of
iterations in which four basic operators are applied over a
list of problems, called a pool of active problems:

a. Decompose. Splits a problem into a set of new sub-
problems. A problem that cannot be split (either be-
cause it has no solution or because a solution is found)
is fathomed. A problem decomposed into new sub-
problems is branched.

b. Bound. Computes a bound value ���� on the optimal
solution of subproblem �. This bound value will be
used by Select and Eliminate operations.

c. Select. Selects which problem to branch from next, as
a function of some heuristic priority function. Selec-
tion may depend on bound values, such as in the best-
first selection rule, or not, as in the case of depth-first
or breadth-first rules.

d. Eliminate. Eliminates problems that cannot lead to
an optimal solution of the original problem (i.e., prob-
lems for which ���� � � , where � is the best known
solution).

Successive decomposition operations create a tree of
problems rooted in the original problem. The value of the
best solution found thus far is used to recognize the un-
promising problems and prune the tree. If the bound value
of the current problem is not better than the best-known

solution, then the problem is eliminated. Otherwise, it is
stored into the pool of active problems. The best-known so-
lution is updated when a better feasible solution is found.
The leaves of the tree are infeasible problems, or pruned
problems, or problems that lead to locally optimal solutions.
The size and shape of the tree strongly depends on the qual-
ity of the heuristic function for the selection rule.

In B&B algorithms, parallelism can be achieved in dif-
ferent ways [14]. We consider the most general approach,
in which the B&B tree is built in parallel by performing op-
erations on different subproblems simultaneously.

Three design choices most influence the performance of
parallel B&B algorithms: the choice of a synchronous or
an asynchronous algorithm, the work sharing mechanism,
and the information sharing mechanism. Synchronous vs.
asynchronous design defines what processes do upon com-
pletion of a work unit—they wait for each other (in the case
of synchronous algorithms) or not (in asynchronous algo-
rithms). Work sharing is the method used to assign work
to processes in order to efficiently exploit available paral-
lelism. Information sharing refers to the methods used to
publish and update the best-known solution. Using an up-
to-date best-known solution improves the efficiency of the
selection and elimination rule and hence has an important
effect on the size of the search space.

3. Related Work

Many investigations of parallel B&B for distributed-
memory systems have adopted a centralized approach in
which a single manager maintains the tree and hands out
tasks to workers [14, 26]. While clearly not scalable, this
approach simplifies the management of information and
multiple processes. Scalability can be improved through a
hierarchical organization of processes or by varying the size
of work units, but the central manager remains an obstacle
to both scalability and fault tolerance. Reliability can be
achieved through checkpointing, but this approach assumes
that there exists at least one reliable process/machine, able
to manage the failure recovery process.

Because of the highly variable number of resources in
the architecture we consider, we need more flexibility than
that offered by the centralized design. Hence we chose a
fully decentralized design.

The only fully decentralized, fault-tolerant B&B algo-
rithm for distributed-memory architectures is DIB (Dis-
tributed Implementation of Backtracking) [10]. DIB was
designed for a wide range of tree-based applications, such
as recursive backtrack, branch-and-bound, and alpha-beta
pruning. It is a distributed, asynchronous algorithm that
uses a dynamic load-balancing technique. Its failure recov-
ery mechanism is based on keeping track of which machine
is responsible for each unsolved problem. Each machine



memorizes the problems for which it is responsible, as well
as the machines to which it sent problems or from which
it received problems. The completion of a problem is re-
ported to the machine the problem came from. Hence, each
machine can determine whether the work for which it is re-
sponsible is still unsolved, and can redo that work in the
case of failure.

4. Target Architecture

The target architecture for our algorithm is a collection
of Internet-connected computers. The distinctive character-
istics of this environment, when compared with a conven-
tional parallel computer, are as follows:

Scale. The number of resources available can poten-
tially be much larger than on a conventional parallel
computer.

Dynamic availability. The quantity of resources
available may vary over time, as may the amount of
computation delivered by a single resource.

Unreliability. Resources may become unreachable
without notice because of system or network failures.

Communication characteristics. Latencies may be
high, variable, and unpredictable; bandwidth may be
low, variable, and unpredictable. Connectivity (as
measured, for example, by bisection bandwidth) may
be particularly low.

Heterogeneity. Resources may have varying physi-
cal characteristics (for example, amount of memory,
speed).

Lack of centralized control. There is no central au-
thority for quality control or operational management.

The failure model we consider is Crash [4, 23], in which
a processor fails by halting. Once it halts, the processor re-
mains in that state. The fact that a processor has failed may
not be detectable by other processors. We make minimum
assumptions about the system:

– There is no bound on message delivery time (asyn-
chronous environment).

– Messages may be lost altogether.
– A network link does not duplicate, corrupt, or sponta-

neously create messages.
– The clock rate on each host is close to accurate (we do

not assume that the clocks are synchronized). This condi-
tion is assumed in many works in the fault-tolerance domain
and it does not represent a practical restriction [5].

5. The Algorithm

We propose a fully decentralized, asynchronous, fault-
tolerant parallel B&B algorithm suited for the environment
described above. Asynchrony is required by the heterogene-
ity of the architecture and allowed by the B&B problem
[14]. Each process maintains its local pool of problems
to be solved. When the local pool is empty, the process
sends work requests to other processes. A process that re-
ceives a work request and has enough problems in its pool
removes some of those problems and sends them to the re-
quester. This on-demand dynamic load-balancing scheme
was chosen to reduce unnecessary communication. The
fully decentralized scheme was preferred for better scala-
bility and for greater reliability. The information sharing is-
sue is solved by circulating the best-known solution among
processes, embedded in the most frequently sent messages.
Processes update the local value for the best-known solution
every time they receive it, and use it when the next decision
is to be made.

For adapting this rather conventional B&B algorithm to
the environment described above, we extend it with (1) a
group membership protocol to allow dynamic variation in
the number and components of resources and (2) a fault-
tolerance mechanism. The novelty of this paper is the de-
centralized fault-tolerance mechanism that relies on a tree-
based encoding of the B&B subproblems. This strategy for
problem encoding also offers a simple mechanism for ter-
mination detection, described in Section 5.4. A brief de-
scription of the epidemic communication mechanism (Sec-
tion 5.1) will help in understanding how the group member-
ship protocol (Section 5.2) and fault-tolerance mechanism
(Section 5.3) function. A comparison with DIB, the decen-
tralized B&B algorithm mentioned in Section 3, concludes
this section.

5.1. Epidemic Communication for Group Member-
ship and Fault Tolerance

Epidemic communication [1] allows temporary incon-
sistencies in shared data in exchange for low-overhead
implementation. More specifically, information changes
are spread gradually throughout the processes, without
the overhead and communication costs typically used to
achieve a high degree of consistency.

Both our group membership and fault-tolerance mech-
anisms use epidemic communication. Since these mecha-
nisms do not require data consistency, epidemic communi-
cation is a convenient algorithm for spreading information.
However, epidemic communication guarantees that eventu-
ally consistency is achieved; that is, all processes will even-
tually see the same data when no more new information
is brought into the system, independent of system failures



[9, 17]. This observation is exploited for termination detec-
tion.

The epidemic algorithms used are variants of the rumor-
mongering algorithm (analyzed in [6]): when a site re-
ceives a new update (rumor), it becomes “infectious” and is
willing to share—it repeatedly chooses another member, to
which it sends the rumor. Upon receipt of a rumor, a mem-
ber updates its local information and sends its own version
after some time interval. In the membership protocol, the
rumor received is sent farther, without being processed. In
the fault-tolerance mechanism, the rumor is stored for local
processing, may be processed locally, and is spread infre-
quently.

5.2. Group Membership Protocol

The group membership protocol is used for collecting
and updating information about which resources participate
in the computation at any given time. The impossibility
of guaranteeing consistent views of group membership in
asynchronous, unreliable systems was proven in [3]. Even
in reliable systems, membership protocols in asynchronous
systems are expensive, requiring several phases for consis-
tency.

A group is defined as a set of members. It is initialized
when the first member enters the group and ceases to exist
when the last member leaves. A process joins a group by
finding one or more members of the group and leaves it ei-
ther by leaving or by failing. We assume the existence of
a fault-tolerant method by which processes can find other
processes, such as broadcasting (when applicable), known
addresses of gossip servers (described below), or a location
service. For the moment, we assume that gossip servers ex-
ist.

Our membership protocol is inspired by the failure-
detection mechanism based on epidemic communication
presented in [29]. Other membership protocols based on
epidemic communication [15] are more elaborate and intro-
duce constraints or costs that are not justified in our case.

The membership protocol works as follows: when a new
computer joins the group of resources, it sends its address to
some known gossip servers. The gossip servers act as any
other member of the group, except that at least one of them
is guaranteed to be active at any given moment during the
computation. This is a loose fault-tolerance constraint, eas-
ily achievable in the absence of network partitioning prob-
lems by increasing the number of gossip servers in the sys-
tem. The main task of these servers is to propagate infor-
mation about the newly arrived members.

Each member process maintains a view of group mem-
bership. The view defines a set of processes that the mem-
ber believes are part of the group at any given time. In ad-
dition, it contains specific information designed to log the

members’ activity by keeping track of when it last heard of
each (known) member, directly from it or through the gos-
sip system. The parameters involved in this mechanism (for
example, the frequency of gossiping and the timeout period
used to deduce failure of a passive member) are chosen to
keep communication and the probability of false member-
ship information under some threshold values [29].

Unlike most of the existent group protocols for asyn-
chronous systems, whose primary goal is better member-
ship view consistency [28, 2, 20], the goal of our member-
ship protocol is scalability in unreliable systems. Among
the advantages of using this membership protocol are (1)
scalability in network load with the size of the group, (2)
tolerance to a small percentage of message loss or failed
members, and (3) scalability in membership view accuracy
with the number of members.

5.3. Fault-Tolerance Mechanism

For B&B algorithms, the loss of a subproblem is unac-
ceptable when the accuracy of the solution is important.

Our proposed fault-tolerance mechanism does not at-
tempt to detect failures of computers and restore their data,
but rather focuses on detecting missing results. Given that
the B&B tree of problems is dynamic, how is it possible
to know the set of existing problems, so that, knowing the
problems completed, one can infer the set of not-completed
problems?

Our solution exploits the fact that the subproblems dy-
namically generated by the B&B algorithm are nodes of a
tree. Each node can be uniquely represented by its position
in the tree. If we encode the position of the nodes in the
tree, we obtain a unique code for each subproblem. Fur-
thermore, given a set of nodes of the tree, we can easily find
its complement, that is, the list of nodes of the tree that are
not in the given set.

5.3.1. Problem Representation. Without loss of general-
ity, we assume that the branching factor for the search tree
is 2 and that each branch is a decision on a condition vari-
able. Therefore, a subproblem is entirely described by a se-
quence of pairs ���� ������ where �� is a condition variable
and ����� is � or �, indicating the left or the right branch,
respectively. We need to include condition variables in the
subproblem encoding because the order in which condition
variables are considered may vary over the tree. For ex-
ample, the left subtree of a node that branches upon ��

may consider �� first and therefore will generate the sub-
problems ���� � ��� ���� ��� and ���� � ��� ���� ���, whereas
the right subtree may branch upon �� first, producing the
subproblems ���� � ��� ��� � ��� and ���� � ��� ��� � ���.

Each pair ���� ������ introduces and assigns a condition
to a new variable. That is what makes the codes (subprob-



X2

1

1

X4

(<X1,0>,<X2,1>,<X5,0>)

(<X1,0>,<X2,1>)X5

X7X6

0

0

X1

X3

10

()

(<X1,0>,<X2,1>,<X5,1>)

(<X1,0>,<X2,0>)

(<X1,0>) (<X1,1>)

Figure 1. Problem representation

lems) self-contained: the code (along with the initial data,
which is provided by a gossip server when a process joins
the computation) is enough to initiate a problem on any pro-
cessor.

5.3.2. Mechanism Description. Our failure-recovery
mechanism allows each process to detect missing problems
independently, based on local information about completed
problems.

We consider a subproblem solved after the branching op-
eration has been performed on it. Solved subproblems are
not necessarily completed: we consider a subproblem to be
completed if it is solved and either it is a leaf or both its
children are completed (see Figure 2).

Every process maintains a list of new locally completed
subproblems and a table of the completed problems it
knows about. When a problem is completed, it is included
in the local list. When � problems (codes) are in the list
or the list has not been updated for a long time, the list is
sent to 	 of the other members as a work report message.
When a member receives a work report, it stores the report
in its table. Occasionally, in order to inform new members
of the current state of the execution and to increase the de-
gree of consistency, a member sends its table of completed
problems to a randomly chosen member.

The size and the number of the problem codes vary with
the shape and number of nodes of the B&B tree. The deeper
the node in the tree, the larger the size of its code; the more
nodes in the tree, the larger the number of codes. Since the
completion of a parent node implies the completion of its
children, communication costs can be reduced by compress-
ing work report messages, via the recursive replacement of
pairs of sibling codes with the code of their parent, and the
deletion of codes whose ancestors are also in the list. Sim-
ulations performed on real B&B trees confirmed that the
compression rate is better when processors are sufficiently
loaded: the taller the subtree completed locally, the larger
the number of codes that do not need to be sent.

Failure recovery is achieved as follows. When a mem-
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Figure 2. Completed, unsolved, and solved
problems: shadowed nodes represent com-
pleted problems, dashed nodes represent un-
solved problems (i.e., problems that are still
in the active pool), and plain nodes represent
solved but uncompleted problems.

ber runs out of work and an attempt to get work through the
load-balancing mechanism fails, it chooses an uncompleted
problem (by complementing the code of a solved problem
whose sibling is not solved) and solves it. The mechanism
“repairs” system failures due to, for example, a computer
that failed before sending work reports or work reports that
were lost before reaching any machine. Note that this mech-
anism also works in the case of temporary network parti-
tions.

This simple, fully distributed mechanism can lead to re-
dundant work in two situations: (a) the lag in updating in-
formation can lead to faulty presumptions on failure; and
(b) the lack of coordination among processors permits mul-
tiple members to work on the same problem. The former
case can be fixed easily by interrupting the redundant work
when information is updated. The costs of the latter situa-
tion can be reduced by employing more sophisticated meth-
ods for choosing work, such as using the location of the last
problem completed locally. Notice, however, that redundant
computation may be inevitable.

If information about completed problems is spread uni-
formly, then the loss of a percentage of members may not
lead to information loss: if the information about the prob-
lems reported to be completed still exists in the system, they
will not have to be redone.

5.4. Almost Implicit Termination Detection

The problem encoding used for implementing the fault-
tolerance mechanism also has the advantage of implicitly
solving the termination detection problem. When succes-
sive code compressions of local lists and tables lead to the
code of the root problem, termination is detected. Since
none of the communication mechanisms used guarantees
data consistency, it is possible that some members do not
have enough information to detect termination. That is why,



before termination, each member that detected the termina-
tion will have to send one more work report, that is, the code
of the root problem, to all members from its local member-
ship list.

5.5. Comparison with DIB

Both DIB and the algorithm we propose are decentral-
ized and fault-tolerant algorithms that work on a dynamic,
tree-like search space. Both algorithms implement low-
cost, simple fault-tolerance protocols for the price of poten-
tially redundant work. However, the two algorithms have
different failure-recovery mechanisms and react differently
in the case of failure.

DIB uses a hierarchical structure for failure detection and
recovery that imposes the need for a reliable or duplicated
node for the root of this hierarchy. Moreover, the failure of
a node affects not only the problems solved locally and not
reported as solved yet, but also the problems given to other
nodes, whose completion cannot be reported (and therefore
considered) anymore.

In our algorithm, all processes are equally responsible
for the behavior of the system in case of failure. Our simula-
tion studies confirm that the failure of all processes but one
still allows the problem to be correctly solved. The mech-
anism is also reliable in the case of faulty network links or
temporary network partitions.

However, the homogeneity involved in our algorithm has
a communication cost: information about the completion of
a problem is eventually spread to all processes, directly (by
reporting the code of the problem) or indirectly (by report-
ing the completion of one of its ancestors).

Performance comparisons of DIB and our algorithm are
of limited interest for two reasons. Because DIB was de-
signed for a wide range of applications, such as recur-
sive backtrack, alpha-beta search and branch-and-bound,
its speedup is “excellent for exhaustive traversal and quite
good for branch-and-bound” [10]. Furthermore, speedup
results are given for maximum 16 processors, while we are
interested in many more resources.

6. Experimental Studies

We use simulations rather than a real implementation to
evaluate our algorithm, as the use of simulation techniques
provides great flexibility in testing a wide range of B&B
strategies in a variety of Internet-like environments.

6.1. Experimental Goals

The goals of our experimental work are as follows: (1)
to verify reliability and evaluate the overall performance of

the algorithm, focusing on the costs introduced by the fault-
tolerance mechanism; and (2) to evaluate scalability for dif-
ferent problem classes and environments. Our work to date
has focused primarily on the first of these two issues.

We studied algorithm reliability by testing various fail-
ure scenarios. The costs introduced by our fault-tolerance
mechanism are communication costs, storage space, tree
contraction time, and redundant work. Because we avoid
centralized control by spreading information throughout the
system, communication costs may be significant. Redun-
dant work may increase when communication conditions
are poor (messages are delayed or lost) or when work load is
low. Storage space may become a serious concern for large
problems because the algorithm permits (and benefits from)
the replication of data. However, the results we obtained
encourage us to continue our research in this direction.

6.2. Simulation Framework

We used Parsec [27] to develop our simulation system.
Parsec is a C-based simulation language for sequential and
parallel execution of discrete-event simulation models. Pro-
cesses are modeled by objects; interactions among objects
are modeled by time stamped message exchanges.

Our simulation system incorporates a detailed represen-
tation of load balancing, failure recovery, and termination
detection mechanisms. We do not include yet the mem-
bership protocol: hence, the pool of resources is predeter-
mined and varies only with failures. Each process, after it
has solved a B&B subproblem, checks to see whether any
messages are pending. If it received a work request, it sat-
isfies the request if there are enough problems in its active
pool. If it received a work report, it merges that report with
its local information on completed problems and contracts
the result.

The simulation was configured so that it could be driven
either by real (precomputed) B&B trees or by random trees.
For real problems, we tested our algorithm on a set of
basic trees that we obtained from an instrumented B&B
code. Basic trees are trees generated by executing a branch-
and-bound algorithm without eliminating the unpromising
nodes.

For each node in the tree, we have the following infor-
mation: (1) the node identifier, (2) its bound value, (3) the
time needed for computing the bound value and expanding
the node or determining infeasibility, and (4) a value spec-
ifying whether the bound value is a feasible solution. The
bound values are used for pruning the test tree and obtaining
the B&B tree, and for computing the optimal solution. The
time value is used for simulating the execution time needed
for the bounding operation. Notice that the time values de-
termine the granularity of the subproblems. During our ex-
periments, we tuned this granularity by multiplying all time



values by a constant factor, and we studied how granularity
affects the overall performance of the B&B algorithm.

Running simulations on basic trees leaves enough room
for generating different B&B trees, depending on communi-
cation characteristics (for example, up-to-date information
about the best-known solution influences pruning decision)
and on the number of processors (because the number of
nodes expanded may vary with the number of processors).
Note that the basic branch-and-bound operation decompose
is recorded within the basic tree structure.

Because the amount of communication and storage space
depends on the shape and the size of the tree, testing trees
resulted from solving real problems provides better accu-
racy. However, creation of basic trees is computationally
infeasible for anything but small problems. But for testing
reliability, and later scalability, the number of nodes is the
only important feature of the test tree. Therefore, we en-
riched our set of test trees with randomly created trees of
various sizes and tested them without eliminating the un-
promising nodes.

6.3. Results

Our simulator measured execution time, communication
costs, and storage space. We tested the algorithm on rela-
tively small problems (up to tens of thousands of nodes ex-
panded), with no optimization efforts: work reports are sent
to randomly chosen resources, without eliminating redun-
dant messages. When out of work, resources ask randomly
chosen resources for work, without using previous experi-
ence to increase performance.

6.3.1. Algorithm Performance. For a very small problem
(approximately 3500 nodes expanded and average granu-
larity of 0.01 seconds per node) the overhead introduced
by the algorithm reaches 36% for 8 processors. This is
determined by three factors: (1) the relatively high com-
munication costs considered (�
�� �
����� milliseconds
for messages of size � bytes); (2) the cost of the dynamic
load balancing mechanism for a network of workstations
[16]; and (3) the small granularity of the subproblems. We
shall see that for a larger problem (Table 1) the overhead is
much lower (15.58% of the total execution for 100 proces-
sors, from which 13.67% are load balancing costs, 0.78%
communication time and 1.13% list contraction time). Fur-
thermore, this overhead can be controlled by tuning various
execution parameters. For example, less frequent termina-
tion verification leads to lower list contraction costs but may
increase idle time. Sending work reports more rarely may
decrease communication time and list contraction costs but
may increase termination detection time, because of lack of
information. If the failure recovery mechanism is activated
(decides that a problem was lost and recreates it) less of-

ten, the overhead introduced (list contraction and redundant
work costs) is lower, but recovery in case of failure is also
slower.

The tests we performed on larger problems (total unipro-
cessor execution time of around 75 hours) show that com-
munication and storage space costs remain negligible (Ta-
ble 1). We find that good performance is achieved on up to
100 processors. These preliminary results encourage us to
continue evaluating our algorithm on larger problems, with
larger number of resources.
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Figure 3. Execution time and communication
in the problem from Table 1.

Communication per processor increases with the number
of processors because the number of work reports sent per
processor increases: since the work load is lower, and there-
fore processes are idle longer periods of time, they suspect
termination and send more work reports. Storage space is
measured for the entire system. The results obtained—43
MB storage space for 100 machines—are promising.

A normal trend would be that the amount of time spent
on list contraction increases with the number of processors,
since the number of messages circulated within the system
increases and the receiving of a work report message re-
quires a list contraction procedure. But because this de-
pends on how the subproblems are assigned on processors,
a lucky configuration may lead to unexpected good results



Table 1. Simulated execution of a real problem (approximately 79,600 nodes expanded). In this
problem, average cost per node is 3.47 seconds. Communication costs are modeled as �
���
�����

milliseconds for messages of size � bytes. B&B time and contraction time are respresented as
percentage of execution time.

No. Execution B&B Contraction Storage Space Communication
Processors Time Time Time Total Redundant (MB/hour

(hours) (%) (%) (MB) (MB) per processor)
10 7.93 98.11 0.35 0.42 0.16 1.01
30 2.91 90.42 5.20 3.76 1.92 1.40
50 2.00 81.19 11.73 12.65 6.43 2.34
70 1.37 87.32 2.33 19.81 10.13 3.16

100 1.04 84.40 1.13 43.06 21.88 4.56

(as for 100 processors, Table 1).
The amount of redundant work is another interesting

measure of our algorithm performance that remains to be
evaluated. However, this amount can be reduced by tuning
parameters (for example, how soon failure is suspected after
a machine unsuccessfully tries to get work) or by designing
more sophisticated methods for picking up unsolved prob-
lems.

When varying problem granularity (by multiplying the
time needed to solve a problem with some constant values),
we observed the following (not unexpected) behavior: The
number of nodes expanded may vary, because the informa-
tion of the best-known solution is computed at different mo-
ments. Load balancing costs are lower when granularity is
coarser. Communication increases unnecessarily because
work reports are sent at fixed time intervals. This last ob-
servation taught us that for scalability, we need to design an
adaptive mechanism for deciding how often work reports
should be sent, based on information collected at runtime:
for example, information about execution time per subprob-
lem and frequency of messages received.

6.3.2. Fault Tolerance. Because our termination detection
mechanism operates by detecting that all expanded prob-
lems have been completed, it is straightforward to verify
that our fault-tolerance algorithm is working correctly—we
simply verify that termination is detected. For visualizing
the behavior of the algorithm, we used Jumpshot, a graph-
ical visualization tool for clog log file format. We used
the MPE library developed by the MPICH team at Argonne
National Laboratory for logging the execution profile.

Figures 4 and 5 are snapshots of the execution of the
algorithm on a very small problem. Figure 4 shows the be-
havior of the algorithm in the absence of failures. The same
problem is presented in Figure 5, where two of the three
processors fail at about 85% of the execution time. The
only processor available after this moment is able to solve

the problem and terminate.

7. Conclusions and Future Work

We presented a failure-recovery mechanism suited for
a tree-like problem space. This mechanism and a low-
cost group membership protocol are the ingredients that
transform a rather conventional parallel branch-and-bound
algorithm into a scalable, reliable, more powerful algo-
rithm, able to exploit the computational power of hundreds
of Internet-connected resources. Scalability is achieved
through a fully distributed design. The algorithm is fault tol-
erant under our assumptions and can execute and terminate
correctly even if only a single resource remains available.

We solved the difficult problems of fault tolerance
and termination detection in distributed environments by
exploiting problem-specific features, specifically the tree
structure of the problem space. While the mechanism we
propose is not applicable to all distributed computations, we
believe that a large class of problems can benefit from it.

We have used simulation studies to explore the behavior
of our algorithm. Initial results on relatively small prob-
lems and up to 100 processors are promising: performance
is good despite the lack of optimization. Communication
costs are reasonable, storage space costs are negligible.
However, we need results on a much larger number of pro-
cessors. We plan to introduce the group membership pro-
tocol into our simulations and to test the algorithm under
various network conditions. An interesting issue to study is
how the network characteristics influence the performance
of the algorithm in general and the costs introduced by the
failure-recovery mechanism in particular. Also, in order to
accurately analyze scalability issues, we plan to design a
flexible scheme for adapting parameters to runtime infor-
mations, such as total execution time and execution time
per problem.



Figure 4. Solving a very small problem on 3 processors. The X axis represents time in ms.

Figure 5. The same problem as in Figure 4: two processors crash about the same time; the third
processor recovers the lost work.
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