
Agreement-Based Interactions for Experimental
Science

Katarzyna Keahey1, Takuya Araki 1,2, Peter Lane1

1 Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 USA
2 NEC Internet Systems Research Laboratories, Kanagawa 216-8555, Japan

keahey@mcs.anl.gov, araki@mcs.anl.gov, lane@mcs.anl.gov

Abstract. Enabling quality of service (QoS) in the Grids requires not only
resource management strategies but also the development of protocols enabling
structured negotiation for the use of resources. Such protocols will allow the
creation of policies dynamically and automatically broadening the scope of
Grid applications. In this paper, we describe design, implementation and
application of an agreement-based infrastructure. We then discuss its use in the
virtual control room developed for the National Fusion Collaboratory.

1 Introduction

Over the last decade computational Grids [1] became a very successful tool at
providing distributed environments for the secure and coordinated execution of
applications. More recently we have seen an increased demand for Grid technologies
in areas with stringent quality of service (QoS) requirements such experimental
science [2, 3]. This resulted in stronger emphasis on providing QoS in Grid
technologies [4] and focus on technologies enabling it. The most recent work in Grid
computing [5-8] indicates that the next-generation Grids will include policy-based
resource management, a variety of authorization services, and support dynamic
resource procurement as well as adaptation to changing system conditions.

If such dynamic, need and opportunity driven environment is to be achieved, it is
fundamental to establish mechanisms and protocols enabling clients to negotiate and
renegotiate policies dynamically rather than rely on static policy sets. Agreement
services provide such mechanism. A client can negotiate with an agreement service to
meet specific objectives in a Grid environment. An agreement service evaluates the
client’s request in the context of a potentially complex set of policies. As a result of
the negotiation, an agreement is created representing a concretization of those policies
to suit the client’s requirements. An agreement can be subsequently renegotiated,
amended, or otherwise dynamically and automatically updated.

Providing Grid services based on such agreements and managing them to
automatically adjust to agreement changes allows many advantages to clients as well
as providers in the Grid. An agreement-based services infrastructure combines
information, negotiation and execution services that allow clients to query the
availability of a particular service in the context of their priority needs, as well as to

2

compare offers from different providers. Service providers can use agreements as a
provisioning target driving resource management as well as to estimate future demand
and analyze client needs. Combining multiple agreements allows for the creation of
agreements of arbitrary complexity. Automatic resource management based on such
agreements allows for adaptation that can both leverage and counteract the changing
conditions in the Grid.

In this paper, we describe the implementation of an agreement-based infrastructure
loosely based on the WS-Agreement specification [9] currently developed at the
Global Grid Forum (GGF). We describe terms for specific applications including
combined agreements, dependency based agreements, and agreement templates. To
manage uncertainty, we associate agreements with confidence levels representing the
strength of the agreement to the client. Finally, we demonstrate how our
implementation satisfies a client’s point of view, working under to constraints of a
virtual control room developed by the National Fusion Collaboratory for use in fusion
experiments.

2 Agreements: Architecture and Implementation

In this section, we first give an overview of the architecture of our system loosely
based on WS-Agreement [9]. We then describe our implementation of this
architecture and our definition of agreement terms used to capture agreements for
services described in section 3.

negotiation

agreement
creation

renegotiation

agreement
management

Agreement Factory

Agreement Management
Agreement Terms 1

…

state of service provider

state of the Grid

policies

Agreement Entries:

Service Provider

Agreement Terms N

C
lie

nt

4

1

23

negotiation

agreement
creation

renegotiation

agreement
management

Agreement Factory

Agreement Management
Agreement Terms 1Agreement Terms 1

…

state of service provider

state of the Grid

policies

state of service provider

state of the Grid

policies

Agreement Entries:

Service Provider

Agreement Terms NAgreement Terms N

C
lie

nt

4

1

23

Figure 1 illustrates a basic interaction in an agreement based approach to resource
management. The interaction starts with a negotiation process which can be viewed as
a discovery phase in which clients advertise their needs to the agreement factory, and
the factory represents what capabilities can be provided depending on policies, state
of the Grid and other potential factors (1). This phase ends in the creation of an
agreement when both sides commit (2). Agreements represent state that can be
accessed and managed in terms of its lifetime and other properties. For example, in
[9] they represented as Grid services [10] while we used an approach that is closer to

Figure 1: Interactions in an agreement-based system

3

Web Services Resource Framework (WS-RF) [11]. Agreement terms describe the
objectives of a particular agreement. The client can manage (e.g., destroy or
renegotiate) and monitor an agreement throughout its lifetime (3).

Once an agreement is created, it can be used to create or influence a service so that
it meets specified objectives. Depending on the agreement terms, this may happen
automatically (i.e., without requiring any further action from a client), or it may be
triggered by an event from a client (4). Further, a client may be required to explicitly
point a provider at an agreement, or the agreement may be available to the provider
through other means.

Although in practice both agreement management and the service provider may be
implemented in the same service, the agreement format and interface are distinct and
the same across multiple services. By standardizing it, we enable service providers to
integrate agreements into their implementation model.

2.1 Implementation

We implemented agreement-based interactions using the Globus Toolkit 3 (GT3).
While our implementation was influenced by WS-Agreement [9] and Web Service
Level Agreement (WSLA) [12], our use case did not require a full implementation of
it. Instead, we focused on defining terms and functionality required by the application
and practical experiences with the system.

Instead of representing each agreement as a Grid service [10], we implemented the
factory to create and maintain a table of current “agreement entries” exposed as
factory Service Data Elements and managed as factory state. The factory also
implemented the agreement management interface. Although based on an
implementation of Grid services, this approach makes our implementation much
closer to WSRF [11]; in general we found this model to be simpler and lighterweight.

Our negotiation process is simplified and emphasizes discovery. An agreement
factory allows a client to retrieve an “agreement template” (based on the
AgreementTermType in the section below) advertising some initial values of the
agreements it supports: for example, a factory may support only services of a fixed
description. The clients can then fill out some or all fields in this template and
propose an agreement. By filling out more or fewer fields, the client can effectively
ask a more or less concrete question about the availability of a specific service. The
agreement may be rejected (if the terms specified by the client cannot be satisfied) by
returning an exception. Alternatively, the factory can supply values for fields not
filled out by the client and return it as provider’s pre-committed offer together with an
agreement handle identifying the agreement. Pre-commitment on the provider’s side
results in creating an “agreement entry” with a short expiration time that can be
extended if the client commits (or expire if the client abandons negotiation). After
receiving factory response, the client can either commit to the proposed agreement or
try again. Our negotiation model is simpler than WS-Agreement as it does not
implement multi-phase negotiations or support renegotiation once an agreement has
been created. Further, it allows negotiation on the level of the whole agreement only.
We also support a simpler commitment model: only the provider can pre-commit and

4

client commit. Client’s commitment extends the agreement time to the end of
availability time.

Although for the purposes of our application domain an agreement should be
claimed through an event (the requisite calculations are performed when the data
becomes available) we decided to simplify this process in order to reduce the impact
of service creation overhead on agreement claiming. Thus, agreement commitment
causes the requisite application service to be instantiated as soon as its availability
period starts. The client can then obtain the handle to the application service from the
factory and claim the agreement from the application service which triggers the
execution of desired actions.

2.2 Agreement Term Type

An agreement represents a commitment that services described by the service
description will be provided during a specified time of service availability with a
specified QoS (whenever applicable). At most one such service will be provided at a
time, but it may be claimed multiple times as the availability period allows. Our
agreement terms are described as follows:
<xsd:complexType name="AgreementTermType">
 <xsd:sequence>
 <xsd:element name="parties" type="tns:AgreementPartiesType"/>
 <xsd:element name="serviceInstanceHandle" type="xsd:anyURI"/>
 <xsd:element name="dependency" type="xsd:anyURI"
 minOccurs="0"
 maxOccurs="unbound"/>
 <xsd:element name="availability" type="tns:ScheduleType"/>
 <xsd:element name="expirationTime" type="xsd:dateTime"/>
 <xsd:element name="serviceLevel" type="tns:serviceLevelType"/>
 <xsd:element name="serviceDescription" type="xsd:anyType"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="AgreementPartiesType">
 <xsd:sequence>
 <xsd:element name="client" type="xsd:anyURI"/>
 <xsd:element name="provider" type="xsd:anyURI"/>
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="ScheduleType">
 <xsd:sequence>
 <xsd:element name="startTime" type="xsd:dateTime"/>
 <xsd:element name="endTime" type="xsd:dateTime"/><
 </xsd:sequence>
</xsd:complexType>

<xsd:complexType name="serviceLevelType">
 <xsd:sequence>
 <xsd:element name="timeBound" type="xsd:duration"/>
 <xsd:element name="confidenceLevel" type="xsd:int"/>
 </xsd:sequence>
</xsd:complexType>

Listing 1: Generic term types used for any agreement in our system

5

The first three items of the schema correspond to the wsa:ContextType of the
specification. They describe the parties of the agreement and include the Grid Service
Handle (GSH) of the client and the provider. The serviceInstanceHandle
element holds the GSH of the application service created as a result of the agreement.
The dependency element contains the agreement handle(s) which the agreement is
dependent on (see section 3.2 and section 3.4 for illustration).

The availability element defines the time period when the services specified
in the agreement are available. The expirationTime element corresponds to the
lifetime of the agreement (not the created service).

The serviceLevel element refers to QoS guaranteed by the agreement. The
timeBound element describes guaranteed execution time. While some entities can
be managed in a deterministic fashion (CPU reservation for example), others are not
(for example, data transfer over the Internet). In order to account for this uncertainty,
the service provider accompanies the agreement terms with a confidence level with
which it can provide the terms.

The serviceDescription element is a domain-specific element; its content
depends on the service; examples will be described in the next section.

3 Agreements and Services

In this section, we describe service description terms for a few simple services and
corresponding service implementations that can be used within an agreement-based
framework described in the previous section. We describe how service levels were
implemented and how the corresponding levels of confidence were estimated.

3.1 CPU Reservation Service

Agreements for this service allow clients to reserve a CPU resource. The
serviceDescription term is defined as follows:
<xsd:sequence>
 <xsd:element name="CPUUtilization" type="xsd:int"/>
 <xsd:element name="hostname" type="xsd:string"/>
</xsd:sequence>
This service description is sufficient to reserve one CPU per host and possibly
timesharing that CPU with other jobs. Thus, CPUUtilization describes the percentage
of CPU to be used. When the agreement is claimed, the job ID of a job to which the
reservation should be applied is passed as an argument to the claim. Note, that the
services description here is not related to QoS: the agreement simply states that a
certain service will be provided.

The implementation of the resource reservation service is similar to GARA [6]: to
implement resource reservation, this service utilizes DSRT [13], which has
functionality to allocate specified percentage of CPU cycles to a certain process. The
service maintains a reservation table; when an agreement is proposed, the table is first
consulted to make sure there is a slot available, and if a specified percentage of CPU
cycles is free during the period of availability, the proposed agreement is accepted.

6

To meet the needs of more complex hardware configurations, these service
description terms can be extended (see [14] for a more extensive definition of terms).
We are currently working on generalizing this infrastructure to allow reservations in
clusters using for example the Maui scheduler plug-in in conjunction with the PSB
batch system [15].

3.2 Application Execution

The terms below allow a client to make agreements for the execution of an
application. The service description represents the name of the program and concrete
argument values. For the specific application used in our experiment (the
magnetohydrodynamics equilibrium fitting code EFIT [16]) the
serviceDescription is as follows:
<xsd:sequence>
 <xsd:element name="application" type="xsd:string"/>
 <xsd:element name="timeSteps" type="xsd:int"/>
 <xsd:element name="executionMode" type="xsd:string"/>
</xsd:sequence>
The agreement for this service guarantees execution of a specific service description
with certain service level as described in listing 1 (in this case: the execution time is
bounded by a certain value). It is important that the service description externalizes all
the arguments that QoS may depend on; in this example both executionMode and
timeSteps influence the execution time of our application.

To meet the QoS, this service reserves CPU resources using the CPU reservation
service. In the current implementation, resource reservation is made by job execution
agreement factory when the level of the execution service is negotiated, but we also
envision scenarios where the client can use a preexisting reservation as input to
negotiation. The GSH of CPU reservation service is stored as the dependency
element of AgreementTermType (see listing 1). It should be noted that the
agreement does not indicate in what way or to what extent the service depends on the
dependency agreement; the knowledge of how to “consume” the dependency is
application-specific.

The time bound on which the service will finish, is calculated by combining
information about the resource reservation and prediction of execution time based on
historical data and scaled to the number of timesteps and the CPU share. The
confidence level of the time bound is modeled as prediction error. Thus, although the
terms of the agreement are based on resource management, they are to some extent
informational, that is, the estimate of execution time is based on prediction rather than
adaptive management of the application.

When the agreement is claimed, the service starts executing the job using GT3’s
Grid Resource and Allocation Manager (GRAM) service. The CPU is claimed by
associating the job ID of the job started in this way with the reservation and the
execution time of the application is monitored by the provider and reported after the
execution finishes.

7

3.3 Data Transfer Service

The Data Transfer Service is implemented based on the GT3 reliable file transfer
(RFT) [17] service and uses RFT’s transferRequest as part of its service
description. Among other qualities, transferRequest contains information about
the source and destination of the transfer, needed to calculate QoS. The exact
parameters are as follows:
<xsd:sequence>
 <xsd:element name="transferRequest"
 type="rft-types:TransferRequestType"/>
 <xsd:element name="size" type="xsd:int"/>
</xsd:sequence>

Again, estimates of execution time (transfer time, in this case) are based on a
simple prediction depending on historical data for this transfer, and confidence level
on associated error. Although we have explored more sophisticated ways of QoS
enforcement for data transfer [18], we have not yet integrated them into this system.

Since fusion codes produce multiple files as a result of a run, the data transfer
service has been customized to operate on directories of data rather than individual
files: the data is tarred before RFT is invoked and untarred at destination. As with
application execution, the transfer time is monitored by the provider and reported
after the service finishes.

3.4 End-to-End Application Execution

Providing an end-to-end application service based on remote execution requires
coordinating several subsidiary services. In our case the workflow scenario is very
simple and consists of application execution and data transfer of output data. The
serviceDescription exposes interface similar to application execution:
<xsd:sequence>
 <xsd:element name="application" type="xsd:string"/>
 <xsd:element name="timeSteps" type="xsd:int"/>
 <xsd:element name="executionMode" type="xsd:string"/>
 <xsd:element name="outputDestination" type="xsd:string"/>
</xsd:sequence>

As before, the service description externalizes arguments on which the QoS
depends; in this case we add the argument describing the destination of the data to
those on job execution. In this way, the end-to-end timebound calculation can be
adjusted to the location in which the execution is eventually scheduled.

The end-to-end application service directly depends on the job execution and data
transfer services for its service level. We currently store those dependencies as the
dependency element of AgreementTermType. Negotiating a composite
agreement is more complex as it requires the factory to in turn to negotiate subsidiary
agreements. Further, dependencies between multiple components may impose an
order on negotiating subsidiary agreements. The end-to-end time is calculated by
combining execution times of the services in appropriate ways (in our case by adding,
but in general we could use min/max, etc.) and using the confidence level of
subsidiary services to calculate a weighted error. As with the other services, the
workflow and its subsidiary services are instantiated when the availability period

8

starts. Claiming an agreement on an application service will trigger claims on
subsidiary services.

In principle, by externalicing the application description as a workflow rather than
an opaque service we could both express a stronger dependency and subject much of
what is currently embedded implementation to automatic management. While full
implementation of this concept would require incorporating a workflow language into
our agreement structure, we made some modest steps in that direction by for example
externalizing service monitoring.

4 Case Study: Interactions in the Virtual Control Room

Our prototype infrastructure and services were put to the test in the virtual control
room experiment at SC03 illustrating how Grids can be used in fusion science
experiments. Fusion experiments operate in a pulsed mode producing plasmas of up
to 10 seconds duration every 15 to 20 minutes, with multiple pulses per experiment.
Decisions for changes to the next plasma pulse are made by analyzing measurements
from the previous plasma pulse (hundreds of megabytes of data) within roughly 15
minutes between pulses. This mode of operation could be made more efficient by the
ability to leverage Grid resources to do more analysis and simulation in the short time
between pulses. Hence, the ability to do time-bounded execution in the Grids is of
critical importance.

The virtual control room experiment followed the script of typical experiment
preparation and interaction. Before an experiment, a scientist can negotiate an
agreement for the execution of a remote fusion code and request for data to be
delivered to a specific location. This process allows the scientist to experiment with,
and fine-tune the parameters for the execution of the code. Thus the agreement-based
system is used not only to perform management actions but also to structure and
automate experimental process that has grown more complex with the use of Grids.

The agreement formed in this way promises to deliver an end-to-end QoS on
execution time of the service as long as the execution is requested within a certain
availability window. Delivering the QoS entails combining data transfers with
application execution and CPU management. At the time of the experiment, the client
can request service execution against a previously formed agreement and expect it to
be satisfied with the agreed on QoS.

In the experiment our implementation and services discussed earlier were used to
obtain agreements and claim execution of an end-to-end EFIT application service.
The agreement based execution was triggered form the SC03 show floor in Phoenix
Arizona when experimental data became ready. The execution comprised: (1)
reservation-based remote execution of EFIT at Princeton Plasma Physics Lab (PPPL),
and (2) data transfer to the control room team at General Atomics in California.
Servers of each site executed on Pentium 4 1.5GHz CPU under Red Hat Linux 7.1.

 application service data transfer service end-to-end execution
Measured 95 (92-99) sec 54 (52-57) sec 173 (167-180) sec
Agreement 95 sec, 90% 53 sec, 93% 172 sec, 92%

9

The table above shows how our actual execution values compared to what was
promised in the agreement. The “measured” row shows the mean of 10 values and
their range for each quality measured. The “agreement” row shows promised value
and the level of confidence with which it is promised. The results show good
agreement with estimated values. The overhead (difference between total execution
time and sum of application execution and data transfer time) is large mainly due to
the fact that while the time spent on the respective services was measured locally, the
end-to-end execution time was measured from the SC show floor accumulating the
high latencies of acknowledgement messages from the services. Despite that, the
overall execution time was satisfactory.

5 Conclusions and Future Work

Although our implementation provides only a simple negotiation model, we found
that it fulfilled the needs of our use case very well. The negotiation phase worked well
as a capability discovery customized to the needs of a client. In fact, some of our
current agreements are used in “advisory” capacity and enable the scientist to do, in a
structured way, what was previously done and an ad hoc manner: estimate times for
codes that will be run during the experiment. Underpinning this interaction are the
resource management actions ensuring the success of such preparations.

Given the dynamic and unreliable nature of a Grid environment, any guarantee
must be qualified: resources may become unavailable or policies and priorities may
change at any moment. Furthermore, while some qualities in the Grid can be managed
(CPU reservations for example), others cannot: we cannot reserve bandwidth on the
Internet or predict exactly the runtime of an application. For this reason, we have
introduced levels of confidence used by the provider to represent the strength of a QoS
guarantee. We modeled them as the probability that a certain QoS will be achieved.
While this measure is correct from a provider’s perspective, it is not very helpful for
the client since it does not give it the means of verifying failure rate. However, with
the addition of resource management it is possible to convert a provider’s failure rate
into a failure rate for a specific user. Such guarantee would be more appropriate from
the perspective of our use case.

6 References

1. Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. International Journal of High Performance
Computing Applications, 2001. 15(3): p. 200-222.
2. Keahey, K., M.E. Papka, Q. Peng, D. Schissel, G. Abla, T. Araki, J. Burruss, S.
Feibush, P. Lane, S. Klasky, T. Leggett, D. McCune, and L. Randerson. Grids for
Experimental Science: the Virtual Control Room. in Challenges of Large Applications
in Distributed Environments (CLADE). 2004.
3. Pearlman, L., C. Kesselman, S. Gullapalli, B.F. Spencer, J. Futrelle, K. Ricker, I.
Foster, P. Hubbard, and C. Severance, Distributed Hybrid Earthquake

10

EngineeringExperiments: Experiences with a Ground-Shaking Grid Application. 13th
International Symposium on High Performance Distributed Computing (HPDC-13),
2004.
4. Foster, I., What is the Grid? A Three Point Checklist. 2002: http://www-
fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf.
5. Foster, I., C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration. 2002: Open
Grid Service Infrastructure WG, Global Grid Forum
6. Foster, I., C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A
Distributed Resource Management Architecture that Supports Advance Reservations
and Co-Allocation. in Proc. International Workshop on Quality of Service. 1999.
7. K. Czajkowski, I. Foster, C. Kesselman, V. Sander, and S. Tuecke, SNAP: A
Protocol for Negotiating Service Level Agreements and Coordinating Resource
Management in Distributed Systems. 8th Workshop on Job Scheduling Strategies for
Parallel Processing, July 2002.
8. Pearlman, L., V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A Community
Authorization Service for Group Collaboration. in IEEE Workshop on Policies for
Distributed Systems and Networks. 2002.
9. Czajkowski, K., A. Dan, J. Rofrano, S. Tuecke, and M. Xu, Agreement-based Grid
Service Management (OGSI-Agreement) Version 0.
https://forge.gridforum.org/projects/graap-wg/document/Draft_OGSI-
Agreement_Specification/en/1/Draft_OGSI-Agreement_Specification.doc, 2003.
10. Tuecke, S., K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman, Grid
Service Specification. 2003: Open Grid Service Infrastructure WG, GGF
11. Foster, I., J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F.
Leymann, M. Nally, I. Sedukhin, D. Snelling, T. Storey, W. Vambenepe, and S.
Weerawarana, Modeling Stateful Resources with Web Services. 2004:
www.globus.org/wsrf.
12. Ludwig, H., A. Keller, A. Dan, and R.P. King, A Service Level Agreement
Language for Dynamic Electronic Services. IBM Research Report RC22316 (W0201-
112), January 24, 2002.
13. Nahrstedt, K., H. Chu, and S. Narayan. QoS-aware Resource Management for
Distributed Multimedia Applications. in Journal on High-Speed Networking, IOS
Press. December 1998.
14. Andrieux, A., K. Czajkowski, J. Lam, C. Smith, and M. Xu, Standard Terms for
Specifying Computational Jobs.
http://www.epcc.ed.ac.uk/%7Eali/WORK/GGF/JSDL-WG/DOCS/WS-
Agreement_job_terms_for_JSDL_print.pdf, 2003.
15. Henderson, R. and D. Tweten, Portable Batch System: External Reference
Specification. 1996.
16. Lao, L.L., H. St. John, R.D. Stambaugh, A.G. Kellman, and W. Pfeiffer,
Reconstruction of Current Profile Parameters and Plasma Shapes in Tokamaks. Nucl.
Fusion, 1985. 25: p. 1611.
17. Madduri, R., C. Hood, and W. Allcock, Reliable File Transfer in Grid
Environments. LCN, 2002: p. 737-738.18. Zhang, H., K. Keahey, and B. Allcock,
Providing Data Transfer with QoS as Agreement-Based Service. submitted to IEEE
International Conference on Services Computing (SCC 2004), 2004

http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www-fp.mcs.anl.gov/~foster/Articles/WhatIsTheGrid.pdf
http://www.globus.org/wsrf
http://www.epcc.ed.ac.uk/%7Eali/WORK/GGF/JSDL-WG/DOCS/WS-Agreement_job_terms_for_JSDL_print.pdf
http://www.epcc.ed.ac.uk/%7Eali/WORK/GGF/JSDL-WG/DOCS/WS-Agreement_job_terms_for_JSDL_print.pdf

