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Abstract. Computational grids provide mechanisms for sharing and ac-
cessing large and heterogeneous collections of remote resources such as
computers, online instruments, storage space, data, and applications. Re-
sources are identified based on a set of desired attributes. Resource at-
tributes have various degrees of dynamism, from mostly static attributes,
like operating system version, to highly dynamic ones, like network band-
width or CPU load.

In this paper we propose a peer-to-peer architecture for resource dis-
covery in a large and dynamic collection of resources. We evaluate a
set of request-forwarding algorithms in a fully decentralized architec-
ture, designed to accommodate heterogeneity (in both sharing policies
and resource types) and dynamism. For this, we build a testbed that
models two usage characteristics: (1) resource distribution on peers, that
varies in the number and the frequency of shared resources; and (2) var-
ious requests patterns for resources. We analyzed our resource discovery
mechanisms on up to 5000 peers, where each peer provides information
about at least one resource. We learned that a decentralized approach is
not only desirable from administrative reasons, but it is also supported
by promising performance results. Our results also allow us to character-
ize the correlation between resource discovery performance and sharing
characteristics.

1 Introduction

Opportunistic sharing of Internet connected computers is a low cost method for
achieving computational power. Recently, this trend was supported by research
in the domain of computational grids [5]: collections of shared, geographically
distributed hardware and software resources made available to groups of remote
users.

In computational grids resources can be computers, storage space, sensors
(e.g., telescopes), software applications, and data, all connected through the
Internet and a middleware software layer that provides basic services for security,
monitoring, accessing information about components, etc. Resources are owned
by various administrative organizations and shared under locally defined policies



that specify what is shared, who is allowed to share and under what conditions.
A set of individuals and/or institutions defined by such sharing rules is called a
Virtual Organization (VO)[6].

A basic service in grids is resource discovery: given a description of resources
desired, a resource discovery mechanism returns a set of (contact addresses of)
resources that match the description. Resource discovery in a grid is made chal-
lenging by the potentially large number of resources and users (perhaps millions)
and considerable heterogeneity in resource types and user requests. Resource
discovery is further complicated by the natural tendency for VOs to evolve over
time, with, for example, institutions joining and leaving (along with their re-
sources and users), the number of resources shared by an institution varying,
and resource characteristics such as availability and CPU load changing.

These characteristics create significant difficulties for traditional centralized
and hierarchical resource discovery services. Hence, we investigate a flat, fully de-
centralized architecture, developing a candidate architecture design and studying
the characteristics of this design via detailed simulation studies. Our architecture
is distinguished by its peer-to-peer flavor: entities that participate in resource
discovery are equally important for the system’s correct and efficient functioning.

There are many common characteristics of grid environments and current
peer-to-peer systems: dynamism, wide-area scale, and heterogeneity are per-
haps the most significant. Recently, decentralized file-sharing systems, such as
Gnutella and Freenet, have been extensively analyzed [2,10], but these results
are of little relevance for us because of several important differences with our
problem:

1. Anonymity is a major objective of file-sharing systems like Gnutella and
Freenet and, consequently, design decisions were made to achieve it. In our
environment, anonymity is not only unnecessary but may also be undesirable,
for example, for accountability, performance tuning, or replication decisions.

2. The dynamics of the Gnutella network are perhaps different from the dy-
namics of a Virtual Organization.

3. Resource sharing in a grid will often be based on different policies, such
as community contributions and/or payment, that will hopefully avoid phe-
nomena such as Gnutella’s free riding behavior [1].

4. User request patterns may be different. While in Gnutella a user is unlikely
to request the same file many times, in grids it is quite usual that a user will
use the same kind of resource multiple times.

5. In file-sharing systems, the answer has to perfectly match the request. In the
case of resource discovery, matches may be approximate (e.g., a 800 MHz
processor is likely to be acceptable if we are asking for 500 MHz processor).

6. Properties used to refer to resources may be mutable.

Hence, we cannot use performance analysis of the large-scale Gnutella net-
work [10] for estimating the performance of a similar solution for our problem.
It is our objective in this paper to also present a framework for our architecture
evaluation and a preliminary set of performance results. Our results show that a



flat, decentralized, self-configuring architecture is a promising solution for deal-
ing with large, variable, and heterogeneous collections of resources. These results
are even more significant since we did not put effort into improving performance.

The rest of this paper is as follows. We discuss related work in Section 2.
Section 3 presents our design decisions. We describe in Section 4 the emulated
grid that we have built as a testbed for evaluating various design alternatives
and we present our measurements in Section 5. We conclude in Section 6 with
lessons learned and future research plans.

2 Locating Resources in Wide-Area Systems

Two classes of related work are relevant for our study: resource discovery in
dynamic, self-organizing networks; and resource discovery in wide-area systems.
The former category has benefited from huge attention recently due to the popu-
larity of peer-to-peer (P2P) file-sharing systems. Such systems identify resources
(files) through their names and use a variety of strategies to locate a specified
named file, including aggressive flooding (Gnutella [15]), combination of informed
request forwarding and automatic file replication (Freenet [2]), and intelligent
positioning of data into search-optimized, reliable, and flexible structures for
efficient and scalable retrieval (as in CAN [9], Chord [12], and Tapestry [14]).

The most successful wide-area service for locating resources based on names
is DNS. Its hierarchical organization and caching strategies take advantage of
the rather static information managed.

All of the above-mentioned systems use names as their search criteria. How-
ever, in our context, requests specify sets of desired attributes and values: for
example, the name and version of the operating system and the CPU load.
From this perspective, Web search engines are resource discovery mechanisms
more similar to what we need for grids: given a set of criteria (search keys), they
return the addresses of relevant resources (web pages). However, Web search
engines do not, deal well with dynamic information.

Nonetheless, using unique names as global identifiers is an appealing idea:
one can position information, based on global IDs, into search-optimized struc-
tures (as in search trees or, more scalably and reliably, Plaxton networks [7])
for faster search. Globe [13] is one system that assigns location-independent
names to resources as a means for retrieving mobile resources (e.g., mobile ser-
vices) in wide-area systems. However, while we could imagine defining a mapping
from attribute-value pairs to names (e.g., by assigning a distinct name to each
meaningful combination of attribute-value pairs) and then maintaining a map-
ping between names and the physical resources that have those attributes, the
volatility of attribute values would make the utility of this mapping uncertain.
Moreover, unlike in name-based search systems, matching resource descriptions
and requests can benefit from a certain degree of approximation: for example,
a computer with a CPU load of 10% is most likely appropriate for matching a
request for a computer with a CPU load of at most 20%.



While aware of the potential existence of clever methods for organizing grid
resource information in search-efficient structures, we believe that using name-
based search is not feasible for resource discovery grids. Among the distributed
resource sharing systems that do not use global names for resource discovery
is Condor’s Matchmaker [8]: resource descriptions and requests are sent to a
central authority that performs the matching. The centralized architecture is
efficient for the local area network for which Condor was initially designed, but
it assumes the willingness of an organization to operate the central server.

Another relevant experience is provided by Globus’s MDS [3]: initially cen-
tralized, this service moved to a decentralized structure as its pool of resources
and users grew. In MDS-2, a Grid is assumed to consist of multiple information
sources that can register with index servers via a registration protocol. Index
servers, or users, can use an enquiry protocol to query directory servers to dis-
cover entities and to obtain more detailed descriptions of resources from their
information sources. Left unspecified is the techniques used to associate enti-
ties into directories and to construct an efficient, scalable network of directory
servers. Our research is complementary to MDS, proposing and evaluating mech-
anisms that can be used to organize these directories (the equivalent of what we
call nodes or peers in this paper) in flat, dynamic networks.

3 Resource Discovery Problem Restated: a Peer-to-Peer
Approach

A grid is a collection of resources shared by different organizations or/and indi-
viduals. Many organizations will have strictly specified sharing policies, like time
intervals when their resources are available for non-internal users or the types of
projects to which their resources may contribute. Attempting to enforce uniform
rules over the grid would drastically limit participation. Moreover, the pool of
resources shared by an organization may vary over time, subject to local com-
puting load and sharing policies. Therefore, a natural solution is to allow every
organization to control access to information about its local, shared resources.

We assume that every participant in the VO (organization or individual) has
one or more servers that store and provide access to local resource information.
We call these servers nodes or peers. A node may provide information about
one resource (e.g., itself) or multiple resources (e.g., all resources shared by an
organization).

From the perspective of resource discovery, the grid is a collection of geo-
graphically distributed nodes that may join and leave at any time and without
notice (for example, as a result of system or communication failures). Although
we assume the sets of resources published by nodes are disjoint, there may be
multiple resources with identical descriptions, for example, multiple copies of the
same data or identical machines.

These observations and assumptions are direct consequences of the problem
characteristics. We present our design decisions in the following.



3.1 Framework

The basic framework is as follows. We assume users send their requests to some
known (typically local) node. The node responds with the matching resource
descriptions if it has them locally, otherwise it forwards the requests to another
node. Intermediate nodes forward a request until its time-to-live (TTL) expires
or matching resources are found, whichever occurs first. If a node has information
matching a forwarded request, it sends the information directly to the node that
initiated the forwarding (rather than via intermediate nodes), which in turn will
send it to its user.

Within this framework, a particular resource discovery algorithm is defined
by two mechanisms: the membership protocol that provides each node with
(typically partial) membership information about other nodes and a request-
forwarding strategy used to determine to which nodes requests should be for-
warded. We focus in this paper on the latter, describing and evaluating four
different request-forwarding strategies, described below. We are not particularly
concerned here with the characteristics of the membership protocol, but note
simply that we use a soft-state membership protocol as is common in peer-to-
peer systems. A node joins the grid by contacting a member node. Contact
addresses of member nodes can be learned through out-of-band information. A
node contacted by joining members responds with its membership information.
Membership lists are updated by periodic "I'm alive” messages exchanged be-
tween neighbors—nodes that know each other. Membership information can also
be enriched over time: upon the receipt of a message from a previously unknown
node, a node adds the new address to its membership list.

The request-forwarding strategy decides to which node (among the locally
known ones) a request is to be forwarded. In addition to contact addresses,
nodes can store other information about their peers, such as information about
requests previously answered. The tradeoff between the amount of information
about neighbors and search performance generates a large set of alternatives,
from random forwarding (no information about the resources provided by other
nodes) to one-hop forwarding, when nodes know exactly which node has the
requested resource. Because information is dynamic, nodes do not cache the
information itself (i.e., the attribute values), but the address(es) where relevant
information was previously found.

3.2 Request Forwarding

Nodes forward the requests they cannot answer to a peer selected from the locally
known nodes. We evaluated four request-forwarding algorithms:

FRQ1. Random: chooses randomly the node to which a request is forwarded.
No extra information is stored on nodes.

FRQ2. Experience-based + random: nodes learn from experience by recording
the requests answered by other nodes. A request is forwarded to the peer
that answered similar requests previously. If no relevant experience exists,
the request is forwarded to a randomly chosen node.



FRQ3. Best-neighbor algorithm records the number of answers received from
each peer (without recording the type of request answered). A request is
forwarded to the peer who answered the largest number of requests.

FRQ4. Experience-based + best-neighbor: identical with FRQ2, except that,
when no relevant experience exists, the request is forwarded to the best
neighbor.

The following section presents the emulated grid that serves as a testbed for
the evaluation of these four request-forwarding algorithms in different grids.

4 An Emulated Grid for Resource Discovery

We opted for building and using an emulated grid to understand whether a
fully decentralized, flat design approach for resource discovery is appropriate
in terms of response time, response quality, and scalability. Because our focus
is on large scale simulations (thousands of nodes), we preferred to build an
emulated grid instead of using a general purpose, usually unscalable, discrete
event simulator. Unlike other grid simulators [11], we designed this framework
with the sole purpose of analyzing resource discovery strategies.

In our framework, each node is implemented as a process that communicates
with other nodes via TCP. Each node maintains two types of information: a)
information about a number of resources (its contribution to the VO) and b)
information about other nodes in the system (including, but not restricted to
membership information). The amount of resource information hosted by nodes
varies: some have information about a large number of resources; others, only one
resource. In our preliminary experiments, we assume the amount of information
about other nodes that can be stored locally is unlimited.

The performance of the resource discovery mechanism depends on usage and
environment characteristics like scale, resource distributions, and user request
patterns. We evaluated our request-forwarding strategies for a number of nodes
from 1000 to 5000. We studied our architecture using requests matching a set of
10000 distinct resources, some with identical descriptions. Request similarity is
difficult to quantify and model. We simplified this problem by considering only
simple requests (requests for one resource) and perfect matching. While this
setup is not realistic, it helps us understand the effects of each of the parameters
we consider. We shall extend our experiments with more realistic scenarios when
analyzing the requirements of the query language.

In the remaining of this section we give details on how we model resource
distributions on nodes and user requests.

4.1 Resource Distributions

When analyzing resource distributions, we have to consider two issues. The first
is the distribution of resources on nodes: some nodes share a large number of
resources, others just one. We modeled three resource distributions, of different



degrees of fairness, as presented in Figure 1. Because of space limitations, we
present in this paper only the results measured in environments with unbalanced
and balanced resource distributions.
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Fig. 1. Geometric distribution of resources on 1000 nodes varies from highly unbalanced
(few nodes provide a large number of resources, while most nodes provide only one) to
fair (all nodes share the same number of resources).

The second aspect we need to model is resource frequency: we need to distin-
guish between common resources (ones that are numerous and widely available)
and rare (even unique) resources. Assuming R resources of D distinct types, we
consider all resources in a grid are equally common (with the same frequency
R/D) and we compare resource discovery performance in grids with different
values for R/D. This is a simpler model than permitting the frequency to vary
over individual resources and tracking requests for common and rare resources.

4.2 User Requests

While usage patterns can be decisive in making design decisions, we tackle the
problem of not having real user request logs, a problem inherent in systems dur-
ing the design phase. We experimented with two request distributions, random
and geometric, in which requests were chosen to match existing resources.

In our experiments, the number of distinct requests in the random distri-
bution is approximately twice as large as that in an equally-sized geometric
distribution (and hence, on average, the same request is repeated twice as much
in the geometric distribution than in the random distribution).

In each of our experiments we randomly chose a set of 10 nodes to which
we sent independently generated sets of 200 requests. The same sets of requests,
sent to the same nodes, respectively, are repeated to compare various request-
forwarding algorithms.



4.3 Starting Topology

The connection graph defined by membership information strongly influences
the resource discovery performance: the more nodes known to the local node,
the more informed its request-forwarding decision can be. We described the
membership protocol previously but we did not detail the starting topology: the
graph whose vertices are nodes in the grid and whose edges connect pairs of
nodes that know each other, as it looks before requests are processed.

We generated the starting topology using the Tiers network generator[4]. In
the experiments presented here we consider that all nodes had joined the grid
before the first request was generated. We assume no failures. The connection
graph changes over time, influenced by design and usage factors (location of re-
quested resources in graph, request-forwarding algorithm, number and diversity
of user requests), therefore the starting topology is important mostly to avoid
unrealistically optimistic starting configurations, e.g., a star topology.

5 Experimental Results

We used the testbed presented above to evaluate the performance of four request-
forwarding algorithms in grids with different resource distributions. We are inter-
ested in understanding response time per request and success rate. Currently we
measure response time as the number of hops traversed for answering a request.
Because in our experiments requests only refer to existing resources, success rate
less than 1 is due to dropped requests because of dead ends or exceeded TTL.

We present in this section the evaluation of the four request forwarding al-
gorithms under different sharing and usage conditions. First, we consider an
environment with common resources (100 resources of each type) and measure
the average number of hops per request for the four forwarding algorithms. Sec-
ond, we compare these results with the same experiments in an environment
with less common resources (10 of each type). In these two sets of results, user
requests are generated to follow a geometric distribution. To understand the
influence of user request pattern on resource discovery performance, we com-
pare performance when requests follow a geometric and, respectively, a random
distribution in environments with different levels of resource frequency.

Because of the randomness encapsulated in our testbed and in our request-
forwarding algorithms, we repeated our experiments multiple times. The results
shown in this section are the average values of measurements obtained in multiple
runs.

Note that only the experience-based forwarding algorithms take advantage
of the time and space-locality of user requests. Given our assumption of infinite
storage space for logs, the response time for the experience-based algorithms
is a lower bound for these particular algorithms. However, these optimistic re-
sults are, at least partially, counterbalanced by our measurements including the
system’s warm up (while nodes learn about other nodes’ resources).

Figure 2 presents the average number of hops per request for various degrees
of sharing fairness, when there are on average 100 resources of each type in the



system. The random forwarding algorithm (labeled FRQ1 in Figure 2) has the
advantage that no additional storage space is required on nodes to record history,
but it is also expected to be the least efficient. This intuition is confirmed by
the unbalanced resource distribution (Figure 2 left), but is infirmed in the case
of the most balanced distribution, as seen in Figure 2 right. In all distributions,
the experience-based + random algorithm (labeled FRQ2) performs the best,
while its more expensive version (FRQ4) proves to be equally or less efficient.
Best neighbor algorithm (FRQ3), which is less expensive in terms of storage
space (since it records only the number of requests answered by each node, not
the requests themselves), performs well only in the unbalanced distribution; in
all the other cases, because of the uniformly small number of distinct resources
per node, it gives false hints on locating resources. Its influence is the reason
for FRQ4 performing poorer than FRQ2, most clearly seen in the balanced
distribution.
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Fqig. 2. Average number of hops per request as a function of the number of nodes in
the grid, for two environments with different resource distributions. (Left: unbalanced.
Right: balanced). The number of resources considered is 10000. Resource frequency
(the number of resources of the same type) is constant:100.

Figure 3 compares resource discovery performance for grids with different re-
source frequencies: when there are on average 100 (R/D = 100) and respectively
10 (R/D = 10) resources of each type. For the grid with less common resources,
the average number of hops is large (in the order of 100s), so we present the
percentage of answered requests within a time-to-live of 100. Observe that in
this environment performance decreases faster with the number of nodes; the
lower 4 lines in each graph in Figure 3 represent the results measured in the
environment with less common resources. Not surprisingly, the four forward-
ing algorithms perform comparatively almost the same, independent of resource
frequency.

The influence of different user request patterns is presented in Figure 4. We
measured average number of hops per request for the best performing forwarding
algorithm (experience-based + random) in the two environments with different
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Fig. 3. Percentage of answered requests within time-to-live 100 in two environments.
Left: unbalanced resource distribution. Right: balanced resource distribution. For each
resource distribution we considered different resource frequencies: R/D = 100 (the
upper 4 plots in each graph) and 10, respectively.

resource frequencies. Again, the influence of user request patterns is stronger in
the environment with less common resources: the number of hops per request is
more than 4 times larger when requests follow a random distribution, compared
to at most 2 in the environment with common resources.
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Fig. 4. The influence of different user requests patterns (random and geometric distri-
butions) on resource discovery performance in environments with different resource fre-
quencies (100 and 10, respectively) and unbalanced resource distribution. The request-
forwarding algorithm used was experience-based+random (FRQ2).

6 Conclusions and Future Work

We argue in this paper that resource discovery in grid environments requires a
decentralized, flat architecture. The inherent problems with such architectures



are the tradeoffs between communication costs and performance. To better un-
derstand these tradeoffs and to evaluate different strategies for resource discov-
ery, we built a simple grid emulator and modeled some relevant parameters: the
pattern of user requests and the distribution of resource information in the grid.
Results obtained for collections of up to 5000 nodes that host descriptions of a
total of 10000 resources are presented. Our results suggest that a decentralized
resource discovery strategy may be a feasible solution: if a request can be for-
warded in 20 msec. (assuming 10 msec. latency in a metropolitan area network
and 10 msec. necessary for request processing), then a path of 20 hops takes less
than half a second.

It is interesting to observe the relation between discovery performance and
environment characteristics: our experiments show that the best performing al-
gorithm (and the most expensive, in terms of storage space) performs well in-
dependent of the type of resource distribution. The best-neighbor algorithm
performs well for an unbalanced resource distribution. The least expensive for-
warding algorithm—random—performs satisfactorily in all cases and is at its
best when resources are equally distributed over nodes. The relative performance
of the forwarding algorithms considered is independent of the average resource
frequency.

Three of the four request-forwarding algorithms evaluated in this paper at-
tempt to improve search performance by using past experience. What differenti-
ates these algorithms is the type of information they choose to remember about
the past. The algorithm that remembers the neighbor that helped the most in
the past has a good guess only when few nodes have a lot to share while others
share close to nothing. However, in an environment where all nodes contribute
equally, this algorithm tends to perform worse than random.

The simple strategies evaluated, while promising, leave room for improve-
ments. One limitation of our framework is the uneven spread of information:
only nodes contacted by users learn. An obvious improvement is to also keep the
other nodes informed, by exchanging history information (for example, along
with membership information). Another simple improvement is to attach his-
tory information to request messages and hence to avoid visiting already visited
nodes.

Our results suffer from limitations due to the computational expensive ex-
periments. More accurate measurements require a larger set of (ideally larger)
experiments: larger number of requests, larger number of runs per experiment,
larger number of nodes. We plan to enrich our understanding of the problem
through careful analytical evaluations.

The most interesting outcomes of this work are still to come. Future work
includes three directions: 1) further development of the emulated grid to in-
clude capabilities for processing realistic requests and simulating data dynamism;
2) design and evaluation of different membership protocols and new request-
forwarding strategies; and 3) reliability evaluation. Our final objective is to
propose a coherent suite of resource discovery mechanisms and an expressive



query language that are well suited to a large, heterogeneous community of grid
members.
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