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Abstract. Both medical research and clinical practice are startiniguolve large
quantities of data and to require large-scale computagiem, result of the digitiza-
tion of many areas of medicine. For example, in brain re$eatbe domain that we
consider here — a single research study may require thetegppeocessing, using
computationally demanding and complex applications, ofifands of files corre-
sponding to hundreds of functional MRI studies. Executifficiency demands the
use of parallel or distributed computing, but few medicakarchers have the time
or expertise to write the necessary parallel programs.

The Swift system addresses these concerns. A simple sgriféinguage,
SwiftScript, provides for the concise high-level spectiima of workflows that in-
voke various application programs on potentially largergjtias of data. The Swift
engine provides for the efficient execution of these workfi@m sequential com-
puters, parallel computers, and/or distributed grids fibd¢rate the computing re-
sources of many sites. Last but not least, the Swift provemaatalog keeps track
of all actions performed, addressing vital bookkeepingfioms that so often cause
difficulties in large computations.

To illustrate the use of Swift for medical research, we déscits use for
the analysis of functional MRI data as part of a researcheptogxamining the
neurological mechanisms of recovery from aphasia afterkstrWe show how
SwiftScript is used to encode an application workflow, anelspnt performance
results that demonstrate our ability to achieve signifisetedups on both a local
parallel computing cluster and multiple parallel clustarslistributed sites.
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1. Introduction

Abundant examples exist of highly computational medicakegch in domains of vital
importance, and of infrastructures focused on supportirtdp sesearch [8,13]. We de-
scribe and advocate here the use of Grid computing techieslogward this end, and
present a case study in which these tools are applied to gusred medical research.
An attractive approach to enhancing the productivity of ioaldresearch is to use
existing Grid infrastructure. There are several good nesior this, the most important
being its ready availability through global cyberinfrastiure, and the substantial capa-
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bilities that can be employed by Grid users. The Grid can ke ss a large, distributed
computing resource used in common by a wide group of sctenfisom the end-user’s
point of view, the Grid is a powerful, multi-user computeitiwfamiliar resource shar-
ing and user access mechanisms. Grid resources are shacediag to specified poli-
cies or may be reserved upon request. The security of eack applications and data
is enforced by standard Unix permissions and by enhancessa@ontrol list security.
There are storage services, large scale execution sere@sg and efficient data move-
ment utilities, and supporting tools that allow users tetaklvantage of large amounts
of computing power. These capabilities can convenienttress specific requirements
of medical research, such as access control to patientatataandated by HIPAA rules
in the USA; high bandwidth to rapidly transfer large DICOMages from the patient’s
records [5]; and sophisticated image analysis algorittoread in the interpretation of
medical conditions.

We describe our success to date in applications in imagasgd neurological re-
search in which we seek to expand the scope and scale of oyputimg capabilities to
study the neurological mechanisms of the process of regdrn@n aphasia due to stroke.
The neuroscience behind the system described below is loasedrk in permutation
tests for clustering analysis [1,11]. The aphasia recosargly (described below) in-
volves the processing of many large functional MRl files tlyloa set of domain-specific
applications, and re-running a statistical analysis prottover a large parameter space.

The benefits of using the Swift workflow system (describeddatad below) for this
application include large reductions in the data and coinguesource management ef-
fort that is typpically required in modern scientific resgarThis is achieved by automat-
ing otherwise manual and labor-intensive processes. litiaddo providing transparent
and on-demand access to Grid resources, our workflows agbieseproducibility and
provenance tracking of the data results, thus enablingloothtion in the actual research
process, not only in sharing the results. The sharing argkrefthe actual research pro-
cesses, as well as of the data, has already shown benefitseirmlsether domains (e.g.,
physics, sociology, economics) in which we also have ongjoailaborations.

2. Grid Infrastructure

The purpose of the Grid software stack is to hide the compl@fithe vast resources
being made available to the users. In a sense this softwarbeaeen as an operating
system that provides the user with the desired functionalittransparent distributed
data access and application execution.

In large distributed systems, the granularity of the atoatitons changes in scale:
instead of CPU-based operations, users describe their wagems of application in-
vocations. They use existing applications and existing,daistomize them, and iterate
over them until the sought-after analysis results are nbthiAt the next level, the dis-
tributed system middleware consists of software that parently manages the execu-
tion of applications on computers that are typically markggelocal resource manage-
ment systems such as Condor [9] or PBS [17]. On top of thesgubtiny clusters, the
Grid software provides an access layer that gives usersmmiiterface to distributed
resources, and provide tools to manage data transferscafimhs execution, and many
other features that hide the heterogeneity of resourcesadistributed clusters. The



current standard for homogenizing the resources is desthip the Open Grid Services
Architecture (OGSA), and implemented by the Globus Toplahong others. At this
level of the Grid software stack, users can access remoteathat execute remote ap-
plications, but they still have to be aware of the networkatlre of Grids, and must
manage the executions of their applications. A higherllesmponent that abstracts the
distributed nature of Grid resources is the Swift systemyHich maps “virtual local
applications” to their corresponding physical instalaton remote Grid sites.

2.1. An Application User’s View

Scientific researchers do not, in general, want to be awacermaputing infrastructure:
they want easy to use, high-performance applications tblatedt fast and accurate re-
sults with little effort, and minimal disruption of their isntific thought process. This
dictates that their applications must be reliably and pansntly allocated the resources
necessary to solve the problems at hand. Our solution tongdkbls available on the
Grid in a fashion which hides the complexities of manuallynaging different comput-
ers is tovirtualize the locatiorof the tool through a level of indirection. This indirec-
tion is implemented in Swift in an internal directory conisig of the application and
computing-site descriptors. With Swift, Grid users cansder their applications to be
virtually local to them: the selection of the site to exedhteapplication and the transfer
of input and output data and parameters to the site is hatrdiesparently by Swift.

In addition to the transparency of accessing the toolsarekers benefit from the
ability to create complex functionality by composing simpbols that each solve some
subproblem of the researcher’s agenda. These gains anerferthanced by the expres-
sivity of SwiftScript, which allows such complex algoritlsnto be expressed in clear,
simple, and high-level logical terms, rather than in lowellephysical details.

Treating the existing applications that the scientistsasstheatomic computation
units of the workflow describing the algorithm, we have built a witow execution en-
gine around the concept dfata flow analysiswhenever the input data for an atomic
computation unit in the workflow becomes available, the ragelects a Grid resource
and sends out the computation and the data to that site. Arnitief the computation,
the engine copys back the results, to make them availablgbseguent workflow steps
that depend on this result as their input, or copies them &pasgitory for archival, dis-
semination, or later analysis.

2.1.1. SwiftScript Language Constructs

SwiftScript extends the earlier Virtual Data Language [#hvsupport for dataset typing
and mapping, dataset iteration, conditional branchinb;warkflow composition, and
other advanced features. SwiftScript support for stangesgramming language control
constructs make it easy to script the execution of appticatand thus to automate the
research process. For example, loops are used to iterateythparameter sweeps, map-
pers to associate inputs and outputs with actual file namesamays to store groups of
similar datasets. We describe in the implementation se&t@ow how SwiftScript can
be used to naturally and effectively express workflows desar neuroscience research
tasks.



3. Aphasia and Brain Research Tools

Stroke, in addition to being the third highest cause of deathe United States, is the
leading cause of disability among adults. (American Heas$agiation. (2003). 2003
Heart and Stroke Statistical Update. Dallas, Texas: Amerldeart Association.) Thus
there is intense interest in the clinical research communitinderstanding the neuro-
logical mechanisms involved in recovery from stroke. Onghswesearch area, in which
we are involved, specifically focuses on analysis of the yegophase fromaphasia
caused by strokend effects on the neurobiological aspects of the patientir aphasia-
recovery studies, we apply fMRI to analyze neural activiBOLD response) in the
brains of subjects after stroke, in response to variousrmitisig stimuli.

3.1. The Research Problem

The medical research behind testing the SwiftScript wovkflechnology on the grid is
the study of the stroke recovery process in a set of patights study uses fMRI brain
images data of the patients subjected to various stimuletea neural activations in
the brain as a result of the experimental conditions. Howereen the practically lim-
ited number of patients available for a typical imaging gtutle results of the activa-
tion detection process are likely to suffer from the undetyaof random brain activa-
tions. Thus, besides the actual activation detection,dkearch plan also contains of a
verification phase to analyze the validity of the resultssHtep involves assessment of
a null hypothesis about the results obtained from the ewxpmri’'s data using random
modifications of the original fMRI readings.

3.2. The Scientific Methodology

In fMRI studies, data are sampled from spatial locations mesolution measured in
voxels. Statistical analysis in a typical experiment witlotconditions (e.g., viewing
circles vs. viewing faces) is based on the following steps:

1. Spatially align all the brain images from an experimenial

2. For each subject, for each voxel, establish the actigitgll(BOLD response) for
each condition (2 data points), and save the differencetivityqdelta).

3. Atthe group level, analyze these delta values to estalitiseach voxel, whether
subjects’ deltas differ from zero. This is performed by oddting whether the
delta vector for each voxel (of length N = number of subjebty a mean that
is reliably greater than 0, using a t-test (i.e., testinghéd two conditions differ
reliably).

4. on the group level: Once we establish for each voxel whetteze is a reliable
difference between the two conditions, find reliable clistd activity.

Because there are many thousands of voxels in our brain snagene would be
“active” just by chance (e.g., if data were randomly sampl€te permutation algorithm
identifies which clusters of neural activity are not liketylie found by chance. In brief,
the method tests the null hypothesis that the clusters ofagicin found in the dataset
are indeed likely to be found by chance. The null hypothesse@ds that if we were to
“switch” the labels of the conditions for one or more papants, and calculate the delta
values in each voxel, we would get equally large activatidngest this null hypothesis,



for one or more participants (in all possible combinatioms) interchange the labels of
the two conditions, re-calculate the reliability of deheeiach voxel (step 3), and evaluate
the clusters we find. If the clusters in our data are greaser the majority of the clusters
found in the permutations, then the null hypothesis is egfleind we conclude that the
clusters of activity found in our study are not likely to beifwl by chance.

4. Grid Implementation

We coded the algorithm described above in SwiftScript amah tihstalled on the Grid
the software applications that were previously used ontdgskorkstatins to solve the
original problem.

In the aphasia-recovery study, the main tools used werR {id] Statistical Pack-
age, used to generate the data for the null-hypothesiagesthd theSUMA[16] tool,
part of the AFNI [2] package, for computing the clusteringefiral activity levels.

The input files can be separated into two classes. The firstpgomnsists of
experiment-dependent inputs, such as the files that cotitaibrain activity measure-
ments from the experiments (tloe i gBr ai n file). The second group consists of files
that are required by the tools involved in the processingh ss the full standard brain
filesbrai nFil e, specFil e needed by AFNI to map the experimental measure-
ments.

There is a special set of files which result as a by-produchefdata-processing
focus of the SwiftScript workflow language. These are thermediary files, that are
produced by the application components that make up the ingdflow, and which
are being fed as inputs to the subsequent blocks in the warkflo the example
below, they have names likeandonBr ai n, randonCl uster, dsetReturn,
cl ust er Threshol dsTabl e.

Following thelocation virtualization principlesiescribed earlier, these file names
aremapped transparentfyom real files that exist on the computer running the workflow
to logical names that the SwiftScript program uses to deecthe workflow data entities.

4.1. SwiftScript Representation of the Aphasia Algorithm

The SwiftScript description of the algorithm first definee thata types of each dataset
(file) that participates in the workflow. For clarity, we defia unique type for each file
containg syntactically and/or semantically differentdgrof data:

type file {}

type fileNames{ file f[]; }

type script {}

type brai nMeasur enent s{}

type preconput edPermutati ons{}

type full BrainData {}

type full Brai nSpecs {}

type brai nDataset {}

type brainCl usterTable {}

type brai nDat asets{ brainDataset b[]; }
type brainClusters{ brainC usterTable c[]; }



Having defined the types of the data entities in the workfloe,d&fine the proce-
dures that process the input files. Some procedures semredace wrappers for exter-
nal programs, and map the input and output parameters usieel wiftScript workflow
to the actual physical arguments of the application program

/1 Procedure to run R statistical package
(brainDataset t) bricRInvoke (script permnutationScript, int iterationNo,
brai nMeasurenents dataAl |, preconputedPernutati ons dataPerm {
app { bricRIinvoke @il enane(pernutati onScript) iterationNo
@il ename(dataAll) @il enane(dataPerm; }}

/1 Procedure to run AFNI C ustering tool
(brainClusterTable v, brainDataset t) bricCuster (script clusterScript,
int iterationNo, brainDataset randBrain,
full BrainData brainFile, fullBrainSpecs specFile) {
app { bricPerlCluster @il ename(clusterScript) iterationNo
@il ename(randBrain) @il enane(brainFile)
@il ename(specFile);}}

/1 Procedure to nerge results based on statistical |ikel hoods
(brainClusterTable t) bricCentralize ( brainCusterTable bc[]) {
app { bricCentralize @il enanmes(bc); }}

(brai nDat aset t) mmkebrain (brainDataset randBrain,
brai nCl uster Tabl e threshol d, fullBrainData brain,
ful | Brai nSpecs spec){
app { nmakeBrain @il enanme(randBrain) @il ename(threshol d)
@il ename(brain) @il enanme(spec); }}

Other procedures use more complex language constructasuigrations and con-
ditional constructs to combine several atomic applicaimvncations.

/1 Procedure to iterate over the data collection
(brainClusters randCl uster, brainDatasets dsetReturn) brain_cluster (
fullBrainData brainFile, fullBrainSpecs specFile) {

int j[]=[1:2000];

br ai nMeasur enent s dat aAl | <fi xed_mapper; file="obs.imt.all">;
preconput edPer nut at i ons dat aPer nxfi xed_mapper; file="permnatrix. 11">;
scri pt randScri pt <fi xed_napper; file="script.obs.inmt.tibi">;
scri pt clusterScript<fixed_mapper; file="surfclust.tibi">;
br ai nDat aset s randBr ai ns<si npl e_nmapper; prefix="rand. brain.set">;
foreach int i inj {

randBrains.b[i] = bricRI nvoke(randScript,i,dataAll, dataPerm;

br ai nDat aset rBrai n=randBrains.b[i];
(randC uster.c[i],dsetReturn.b[i]) =
bricCluster(clusterScript,i,rBrain, brainFile,specFile);

P}

Having declared the data types and the procedures that reitlegs the data, we
must define the dynamic mapping of the logical file names us&WhiftScript to actual
on-disk file resources. This mapping can range from simpteato-file mapping to
database-select operations or the matching of multipkeliyea regular expression, based
on the choices available in an extensible library of mappgiémentations.

full Brai nDat a brai nFi | e<fi xed_mapper; file="colin_|h_neshl40_std. pial .asc">;
ful | Brai nSpecs specFi | e<fi xed_nmapper; file="colin_l h_nesh140_std. spec">;
br ai nDat aset s randBr ai n<si npl e_nmapper; prefix="rand. brain. set">;



brai nC usters randd ust er <si npl e_mapper; prefix="Tnean. 4nm perni,
suffix="_C stTable_r4.1 a2.0.1D"'>;

br ai nDat aset s dset Ret ur n<si npl e_mapper; prefix="Tmean. 4nm per ni',
suffix="_Clustered_r4.1 _a2.0.nim.dset">;

brai nC usterTabl e clusterThreshol dsTabl e<fi xed_mapper; file="threshol ds.table">;

br ai nDat aset brai nResul t <fi xed_mapper; file="brain.final.dset">;

br ai nDat aset ori gBrai n<fi xed_mapper; file="brain.permnutation.1">;

The actual workflow consists simply of invocations of thehlgvel procedures
defined above:

/1 Main program |aunches the entire workflow

(randd uster, dsetReturn) = brain_cluster(brainFile, specFile);

cl uster Threshol dsTabl e= bricCentralize (randC uster.c);

br ai nResul t =makebr ai n(ori gBrai n, cl ust er Thr eshol dsTabl e, brai nFi | e, specFile);

Note that this simple description, at which level most resears will work, en-
hances productives by abstracting and automate many cengd&s. For the sci-
entific research that we described above, the two thousamtations of the block
in the br ai ncl ust er function were determined individualized processing of the
bri cRI nvoke function, depending on the parameierAlso, the workflow performs
automatic synchronization of the many subtasks involvextimg for the result of these
two thousand executions to finish before continuing withrtterging (makebr ai n)
procedure.

4.2. The Swift Environment, and Grid Application Deploymen

For completeness, we summarize the additional infragtra¢hat enables the transpar-
ent execution of the workflow described above. The appticatbmponents (containing
the problem-solving algorithms) that are invoked in thekfiorv, must be installed at the
sites that are to be involved in the computation. This steeigerally done once, as part
of application deployment. In our case we installed the iappibnsbr i cRI nvoke,
bricPerl Custer, bricCentralize, andmakebr ai n at several sites, which
we recorded in Swift catalogs. Swift uses these catalogestiv choose on which sites,
and to what degree of parallelism, to invoke the application

Internally, Swift uses Globus [6] software for importanhfiions such as authenti-
cation with remote sites, data transfer, and remote tasication. We run our applica-
tions on several sites spanning the Teragrid, Open Scieridedhd independent institu-
tion clusters. The architecture of the infrastructure ingd in executing one’s workflow
on the Grid is depicted in Figure 1.

Other Swift facilities allow the user to resume the workflowrh the point of any
failure, to cluster short-running applications for moréognt remote execution, and to
visualize the progress of workflow execution. Figure 2 shawsapshot of the executing
workflow.

5. Results
5.1. Benefits of Grid Computing in Health-related Research

To measure the benefits of using workflow systems to managanasdata analysis in
Grid environments, we recorded the execution time of theesaarkflow instance in
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Figure 1. The components of a workflow based application
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Figure 2. The execution of a small subset of the aphasia study anakaikflow. The colors of the boxes
indicate if the task has completed (green) or is executiedjdiy). Lines represent data dependencies.

both a local workstation and a distributed Grid environmant provide initial results
in Table 1 below. The performance gains depend primarilyhengarallelism that the
workflow exhibits (in this case we had two thousand parakekeation threads), on the
available number of sites that could execute the applicatibat made up our workflow
(in our case, three sites), and the number of simultanedissggecuted by those sites
(which depends in turn on local cluster sizes, on clustesuee management policies,
and on contention on the cluster from the other users tha¢ sham).

Other than speedup results, the currentimplementatiowskhe researcher to mod-
ify the scripts that are used in this workflow, as we chose aghatiere these scripts,



Table 1. Timing measurements for executing grid versus local exacwf the aphasia workflow

L ocal Grid
3 min/1 job instance 5 min / single instance run on the Grid
300 min/ 100 job instances 50 minutes / 100 job instances

Figure 3. An intermediate stage of activation analysis as procesgedeaworkflow

containing the actual scientific procedures, are deployedemnand, dynamically to the
Grid sites.

While we used only three sites in this study, we could inczehat number to im-
prove the workflow’s speedup significantly. We note a majandsi¢ if this approach
here: other researchers using the same tools that wereruthgsd work could readily use
the already deployed applications that we used as well (SUR)Aor simply obtain the
current workflow definition and execute it without the needny special setup. Swift
also allows us to visualize both the workflow’ s executiorg(ffe 1) and the “real-time”
display of the activations on the brain, displayed in Figgire

6. Related Work

Swift has its origins in the GriPhyN Virtual Data System (VQ9], originally designed
to automate the analysis of the large quantities of dataymedi by high energy physics
experiments. Another VDS component, Pegasus [4], implésrspecialized strategies
for scheduling tasks on computing sites.

Much work on workflow for eScience has focused on the orchgstr of web ser-
vice invocations, as supported, for example, by BPEL anddweina [12], which im-
plements a BPEL subset. Kepler [10] is used for similar paggoWe view Swift as ad-
dressing a different problem than these systems, namelyrtinestration of large num-
bers of calls to application programs, and their practical tiansparent execution in a
distributed Grid.

GenePattern [15], like Swift, focuses on the compositioagglication programs. It
differs in its graphical programming approach, and its laickupport for large-scale par-
allel processing. Google’s MapReduce [3], like Swift, feea on the large-scale analysis
of large quantities of data. Swift differs in its suppora XDTM, of diverse file system
structures, and its support for task-parallel as well ag-garallel execution.



7. Summary

We have introduced a tool, Swift, that supports the paraltel distributed execution
of computationally demanding and data-intensive scientiimputations. Using an ex-
ample from a clinical study of aphasia recovery, we have rilesd how Swift allows
(via its scripting language, SwiftScript) for the concispresentation of complex algo-
rithms, for the efficient execution of those algorithms orglial and distributed (“grid”)
computing systems, and the subsequent exploration andsasset of the workflow’s
execution history.
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