July 2006, Vol.21, No.4, pp.513-520 J. Comput. Sci. & Technol.

Globus Toolkit Version 4: Software for Service-Oriented Systems

Tan Foster
Computation Institute, Argonne National Laboratory & University of Chicago, Argonne, IL 60439, U.S.A.
E-mail: foster@mcs.anl.gov

Revised May 15, 2006.

Abstract The Globus Toolkit (GT) has been developed since the late 1990s to support the development of service-
oriented distributed computing applications and infrastructures. Core GT components address, within a common framework,
fundamental issues relating to security, resource access, resource management, data movement, resource discovery, and so
forth. These components enable a broader “Globus ecosystem” of tools and components that build on, or interoperate with,
GT functionality to provide a wide range of useful application-level functions. These tools have in turn been used to develop
a wide range of both “Grid” infrastructures and distributed applications. I summarize here the principal characteristics
of the recent Web Services-based GT4 release, which provides significant improvements over previous releases in terms
of robustness, performance, usability, documentation, standards compliance, and functionality. I also introduce the new
“dev.globus” community development process, which allows a larger community to contribute to the development of Globus

software.

Keywords
1 Introduction

Globus is:

e A community of users and developers who collabo-
rate on the use and development of open source software,
and associated documentation, for distributed comput-
ing, virtual organizations, resource federation.

e The software itself—the Globus Toolkit: a set
of libraries and programs that address common prob-
lems that occur when building distributed system ser-
vices and applications.

e The infrastructure that supports this community—
code repositories, email lists, problem tracking system,
and so forth: all accessible at dev.globus.org.

The software provides a variety of components and
capabilities, including:

e A set of service implementations that address re-
source management, data movement, service discovery,
and related concerns.

e Tools for building new Web Services, in Java, C,
and Python.

e A powerful standards-based security infrastruc-
ture, for authentication and authorization.

e Both client APIs (in different languages) and com-
mand line programs for accessing these various services
and capabilities.

e Detailed documentation on these various compo-
nents, their interfaces, and how they can be used to
build applications.

These components in turn enable a rich ecosystem
of components and tools that build on, or interoperate
with, GT components—and a wide variety of applica-
tions in many domains. From our experiences and the

distributed systems, distributed applications, Internet applications, middleware, open source

experiences of others in developing and using these tools
and applications, we identify commonly used design pat-
terns or solutions, knowledge of which can facilitate the
construction of new applications.

In the remainder of this article, I review briefly the
current status of the Globus community, software, and
infrastructure, focusing in particular on those aspects
of GT4 that should be of interest to those wishing to
work with the software. I reference more technical ar-
ticles for more details on the underlying concepts and
mechanisms.

2 DMotivation and Concepts

Globus software is designed to enable applications
that federate distributed resources, whether computers,
storage, data, services, networks, or sensors. Initially,
work on Globus was motivated by the demands of “vir-
tual organizations”[!! in science. More recently, com-
mercial applications have also become important. In
both commerce and science, a need to accelerate the
pace of innovation demands technologies that can re-
duce barriers to resource access and federation.

Federation is typically motivated by a need to access
resources or services that cannot easily be replicated lo-
cally. For example:

e a scientist (or business analyst) needs to access
data located in different storage systems across a scien-
tific collaboration (or enterprise);

e a business (or physics community) must allocate
computing, storage, and network resources dynamically
for a time-varying e-commerce (or physics data analysis)
workload;

Regular Paper

Work on Globus has been supported in part by the Mathematical, Information, and Computational Sciences Division subprogram

of the Office of Advanced Scientific Computing Research, U.S. Department of Energy, under Contract W-31-109-Eng-38, by the
National Science Foundation (NSF)’s Office of Cyberinfrastructure and other programs, and by IBM, DARPA, NASA, Microsoft, the
UK Engineering and Physical Sciences Research Council and Department of Trade and Industry, and the Swedish Research Council.

514

e an engineer needs to design and operate experi-
ments on remote equipment, linking and comparing nu-
merical and physical simulations;

e an astronomy experiment must replicate a terabyte
of data a day to partner sites worldwide.

While every application has unique requirements, a
For example,
we must often discover available resources, configure a
computing resource to run an application or deploy a

small set of functions frequently recur.

service, manage an application or service, move data
reliably from one site to another, monitor system com-
ponents, control who can do what, manage user cre-
dentials and attributes. Good-quality implementations
of these functions can reduce development costs. Fur-
thermore, if these implementations are widely adopted
and/or implement standards, they can enhance interop-
erability. Globus software addresses both goals, using an
open source model to encourage both contributions and
adoption, and implementing standards whenever feasi-
ble.

GT4 makes extensive use of Web Services!?! to de-
fine its interfaces and structure its components. Web
Services provide flexible, extensible, and widely adopted
XML-based mechanisms for describing, discovering, and
invoking network services. Its document-oriented pro-
tocols are well suited to the loosely coupled interac-
tions that many argue are preferable for robust dis-
tributed systems[®]. These mechanisms facilitate the
development of service-oriented architectures—systems
and applications structured as communicating services,
in which service interfaces are described, operations in-
voked, access secured, etc., in uniform ways.

While end-user applications are typically concerned
with domain-specific operations such as pricing a port-
folio or analyzing a gene sequence, computing ulti-
mately requires the manipulation and management of
infrastructure: physical devices such as computers, stor-

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

age systems, and instrumentation(®. Thus, GT4 pro-
vides a set of infrastructure services that implement
interfaces for managing computational, storage, and
other resources. In many Globus deployments, such
as TeraGrid®!, Open Science Grid!®", Cancer Bioin-
formatics Grid (caBIG)®!, EGEEP!, LHC Computing
Grid[*%, UK National Grid Service™, China Grid'?/,
China National Grid"3/, and NAREGI['¥], these services
are deployed to support a range of different applica-
tion communities, each of which then executes their own
application-specific code that relies on those services.

3 Globus Architecture

Fig.1 illustrates various aspects of GT4 architecture.
It depicts three sets of components as follows.

e A set of service implementations (the bottom
half of the figure) implement useful infrastructure ser-
vices. These services address such concerns as exe-
cution management (GRAM), data access and move-
ment (GridFTP, RFT, OGSA-DAI), replica manage-
ment (RLS, DRS), monitoring and discovery (Index,
Trigger, WebMDS), credential management (MyProxy,
Delegation, SimpleCA), and instrument management
(GTCP). Most are Java Web Services but some (bot-
tom right) are implemented in other languages and/or
use other protocols.

e Three containers can be used to host user-
developed services written in Java, Python, and C, re-
spectively. These containers provide implementations
of security, management, discovery, state management,
and other mechanisms frequently required when build-
ing services. These containers extend open source
service hosting environments with support for useful
Web Service (WS) specifications, including WS Re-
source Framework (WSRF), WS-Notification, and WS-
Security!1?-16],

1
Client Your Your Your 1 Your Your Your
Java C Python I Java C Python
client client client : client | client client
1
1 2 —
X.509) credentials =
Interoperat?le common % authentication
WS-I-compliant N
SOAP messaging \\
\
\ o
N
\
o 1 = =
Your é g -g % = Your Your 1 >l 8 <
Jav.a = § g % E) <8 *E Python) 1 E E —~ %
service é SR E = . § service service |||y = A 8 té)
o227 |E s 5 : GHI=R 1=
Java 5] =] S||I” = Python © : & &
container container container
.~ = o, 1
Server Java servi.ces i.n Apache axis Pythog hos'ting, :c services using
plus GT libraries & handlers GT libraries 1 GT libraries

Fig.1. Selected GT4 components and interactions. Shaded boxes are GT4 code and white boxes user code.

Ian Foster: Globus Toolkit Version 4: Software for Service-Oriented Systems 515

e A set of client libraries allow client programs in
Java, C, and Python to invoke operations on both GT4
and user-developed services. In many cases, multiple
interfaces provide different levels of control: for exam-
ple, in the case of GridFTP, there is not only a simple
command-line client (globus-url-copy) but also control
and data channel libraries for use in programs—and the
XIO library allowing for the integration of alternative
transports.

While individual GT4 services are useful in and of
themselves, the whole is more than the sum of the arts.
Uniform abstractions and mechanisms mean that clients
can interact with different services in similar ways. This
uniformity, which facilitates the construction of com-
plex, interoperable systems and encourages code reuse,
occurs at several levels:

e WS-I-compliant SOAP messaging among Web Ser-
vices and their clients;

e a common security and messaging infrastructure
enables interoperability among different applications
and services;

e a powerful and extensible authorization frame-
workl!™ provides uniform, standards-based access to a
range of different authorization mechanisms;

e all containers and most services implement com-
mon Web Services interfaces and behaviors for state rep-
resentation, access, and subscription, facilitating discov-
ery and monitoring!'®!;

e common abstractions and interfaces for lifetime
management of stateful components, supporting both
explicit and soft state destruction.

T " Tech 1
i Data] 1 preview 1
I replication] Iomm]
e e =
i Grid ;
Delegation D:dta access | telecontrol .
& integration |} protocol |
1o
[mEs===s ==
Community Replica |} Community Python
authorization || location |} ?f:ri?\;}:)ﬁ : WebMDS runtime
o
I [l
Authentication| | Reliable |} Workspace ! Trigoer C
authorization || file transfer | management , &8 runtime
1
Credential . Grid resource Java
Mgmt GridFTP allocation & Index S
management
. Execution Info Common
Security Data Mgmt Mgmt B e

Fig.2. Primary GT4 components (dashed lines represent “tech

previews”).

4 Globus Software Details: How Do I ...?7

Fig.2 provides another perspective on GT4 structure,
showing the major components provided for basic run-
time (on the right) and then (from left to right) security,
execution management, data management, and informa-
tion services. I introduce these components by showing

how they can be used to perform various tasks.

4.1 How Do I Manage Execution?

Let us say we want to run a task on a computer, or
deploy and manage a service that provides some capa-
bility to a community. In both cases, we need to acquire
access to a computer, configure that computer to meet
our needs, stage an executable, initiate execution of a
program, and monitor and manage the resulting com-
putation.

The GT4 Grid Resource Allocation and Manage-
ment (GRAM) service'” addresses these issues, pro-
viding a Web Services interface for initiating, monitor-
ing, and managing the execution of arbitrary compu-
tations on remote computers. This interface allows a
client to express such things as the type and quantity
of resources desired, data to be staged to and from the
execution site, the executable and its arguments, cre-
dentials to be used, and job persistence requirements.
Other operations enable clients to monitor the status of
both the computational resource and individual tasks,
to subscribe to notifications concerning their status, and
control a task’s execution.

A GRAM service can be used for many different pur-
poses. The following are some examples.

e The GriPhyN Virtual Data System (VDS)[20:21]]
Ninf-G[??l| and Nimrod-G[?3 use GRAM interfaces to
dispatch (potentially large numbers of) individual tasks
to computers. For example, GADU?4 uses VDS to dis-
patch several million BLAST and BLOCKS runs as it
updates its proteomics knowledge base.

e GRAM is often used as a service deployment and
management service. GRAM is used first to start the
service and then to control its resource consumption and
provide for restart in the event of resource or service fail-
ure.

e The MPICH-G2 implementation[?! of the Message
Passing Interface uses GRAM to coschedule subtasks
across multiple computers. For example, Dong et al.[2°]
have used MPICH-G2 to conduct a complete simulation
of the human arterial tree.

Two additional components are provided within
GT4 as “tech previews”, meaning that they are less
thoroughly tested than other components and more
likely to change in the future:

e a Workspace Management Service (WMS)[?"] pro-
vides for the dynamic creation of execution sandboxes,
using virtual machines (e.g., Xen[zsl) or Unix accounts;

e the Grid TeleControl Protocol (GTCP) service?"]
is for managing instrumentation; it has been used for
earthquake engineering facilities and microscopes.

All of these “execution management” services have
in common that they create a “managed computation”
within a specified execution environment, that can then
be monitored and managed via Web Services interfaces.

516

4.2 How Do I Access and Move Data?

Globus applications often need to manage, provide
access to, and/or integrate large quantities of data at
one or many sites. This “data problem” is broad and
complex, and no single piece of software can “solve” it in
any comprehensive sense. However, several GT4 com-
ponents implement useful mechanisms that can be used
individually and in conjunction with other components
to develop interesting solutions. (A recent article[3]
ports on these tools and various success stories.)

e The Globus implementation®! of the GridFTP
specification provides libraries and tools for reliable, se-
cure, high-performance memory-to-memory and disk-to-
disk data movement. It has achieved 27 Gbit/s end-to-
end over wide area networks, and can interoperate with
conventional FTP clients and servers. GridFTP pro-
vides the substrate on which are built many higher-level
tools and applications.

e The Reliable File Transfer (RFT) servicel®? pro-
vides for the reliable management of multiple GridF'TP
transfers. It has been used, for example, to orchestrate
the transfer of one million files between two astronomy
archives.

e The Replica Location Service (RLS)!3! is a decen-
tralized system for maintaining and providing access to
information about the location of replicated files and
datasets. For example, the LIGO experiment uses it
to manage more than 40 million file replicas across 10
sites®4].

e The Data Replication Service (DRS: a tech pre-
view) combines RLS and GridFTP to provide for the
management of data replication/®4.

e Data Access and Integration (OGSA-DAI) tools!®°!
provide access to, and server-side processing of, rela-
tional and XML data.

re-

4.3 How Do I Monitor and Discover Services?

Monitoring and discovery are two vital functions in
any distributed system, particularly when that system
spans multiple locations, as in that context no-one is
likely to have detailed knowledge of all components.
Monitoring allows us to detect and diagnose the many
problems that can arise in such contexts, while discovery
allows us to identify resources or services with desired
properties. Both tasks require the ability to collect in-
formation from multiple, perhaps distributed, informa-
tion sources.

In recognition of the importance of these functions,
monitoring and discovery mechanisms are built into
GT4 at a fundamental level, as follows (see Fig.3)[¢l.

e GT4 provides standardized mechanisms for asso-
ciating XML-based resource properties with network
entities and for accessing those properties via either pull
(query) or push (subscription). These mechanisms—
implementations of the WSRF and WS-Notification
specifications!'® —are built into every GT4 service and
container, and can also be incorporated easily into any

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

user-developed service. Services can be configured to
register with their container, and containers with other
containers, thus enabling the creation of hierarchical (or
other) structures.

e GT4 provides two aggregator services that
collect recent state information from registered infor-
mation sources. As not all information sources sup-
port WSRF /WS-notification interfaces, these aggrega-
tors can be configured to collect data from any informa-
tion source, whether XML-based or otherwise. The two
aggregators implement a registry (Index) and event-
driven data filter (Trigger), respectively.

e GT4 provides a range of browser-based interfaces,
command line tools, and Web Service interfaces that al-
low users to query and access the collected information.
In particular, the WebMDS service can be configured
via XSLT transformations to create specialized views of
Index data.

GT4 container C]lents g, WebMDS),

“index

Registration & ¥ o O
WSRE/WSN—T— #
access " adapter I\\
i \
T

GT4 container 4

MDS-
~index

Automated -3
registratipn”
\

in consatner ¥

Fig.3. GT4 monitoring and discovery.

WS-
ServiceGroup]

S [GT4 cont.

Cuftom protecols \\ MDS-
for ngn-WSRF extities |\ index
N

~

S

1
Ml

These mechanisms provide a powerful framework for
monitoring diverse collections of distributed components
and for obtaining information about those components
for purposes of discovery. For example, the Earth Sys-
tem Grid (ESG)P7l uses these mechanisms to monitor
the status of the services that it uses to distribute and
provide access to more than 100 TB of climate model
data.

4.4 How Do I Control Who Can Do What?

Security concerns are particularly important and
challenging when resources and/or users span multiple
locations. A range of players may want to exert control
over who can do what, including the owners of indi-
vidual resources, the users who initiate computations,
and the “virtual organizations” established to manage
resource sharing. “Exerting control” may include vari-
ously enforcing policy and auditing behavior. When de-
signing mechanisms to address these requirements, we
must work not only to protect communications but also
to limit the impact of compromises at end systems. A
complete security “solution” must combine components
concerned with establishing identity, applying policy,

Ian Foster: Globus Toolkit Version 4: Software for Service-Oriented Systems 517

tracking actions, etc., to meet specific security goals.
GT4 and related tools provide powerful building blocks
that can be used to construct a range of such systems.

At the lowest level, GT4’s highly standards-based
security components implement credential formats and
protocols that address message protection, authentica-
tion, delegation, and authorization. As shown in Fig.4,
support is provided for (a) WS-Security-compliant
message-level security with X.509 credentials (slow) and
(b) with usernames/passwords (insecure, but WS-I Base
Security Profile compliant) and for (c) transport-level
security with X.509 credentials (fast and thus the de-
fault).

In GT4’s default configuration, each user and re-
source is assumed to have an X.509 public key creden-
tial. Protocols are implemented that allow two entities
to validate each other’s credentials, to use those creden-
tials to establish a secure channel for purposes of mes-
sage protection, and to create and transport delegated
credentials that allow a remote component to act on a
user’s behalf for a limited period of timel38:39],

Authorization call outs associated with GT4 ser-
vices can be used to determine whether specific re-
quests should be allowed.
rization framework component!” allows chains of au-
thorization modules with well-defined interfaces to be
associated with various entities, e.g., services, in the

In particular, the autho-

container. This component also provides multiple dif-
ferent authorization module implementations, ranging
from traditional Globus gridmap-based authorization to
a module that uses the SAML protocol to query an ex-
ternal service for an authorization decision.

Supporting tools, such as MyProxy“%, GridShib[*!],
KX509142 VOMSH3! and PERMIS!*Y, support the
generation, storage, and retrieval of the credentials that
GT4 uses for authentication, and address issues concern-
ing group membership, authorization policy enforce-
ment, and the like. These tools can be used to build
systems that provide secure authentication while never
requiring users to manage their own X.509 credentials.
In addition, they can integrate with systems such as

Kerberos and Shibboleth.

4.5 How Do I Build New Services?

The GT4 distribution builds on (and includes) open
source Web Services “container” software that supports
the development of components that implement Web
Services interfaces. This software deals with such issues
as message handling and resource management, thus al-
lowing the developer to focus their attention on appli-
cation logic.

GT4 also packages additional components to provide
GT4 Web Services containers for deploying and manag-
ing services written in Java, C, and Python. As illus-
trated in Fig.5, these containers can host a variety of
different services as follows.

e Implementations of basic WS specifications
such as WSDL, SOAP, and WS-Security support ser-
vices that make use of these specifications to implement
basic Web Services functionality.

e Implementations of state management spec-
ifications, notably WS-Addressing, WSRF, and WS-
Notification, support services that want to expose and
manage state associated with services, back-end re-
sources, or application activities(t?]. (For example, GT4
GRAM and RFT services use these mechanisms to man-
age state associated with tens of thousands of computa-
tional activities and file transfers, respectively.)

e The Java container hosts the GT4 Java Web
Services mentioned earlier, such as GRAM, RFT, DRS,
Delegation, Index, and Trigger.

e Enhanced registry and management capabil-
ities, notably the representation of information about
services running in a container as WS-Resources, faci-
litate the creation of distributed registries and system
monitoring tools.

In general, the Java container provides the most ad-
vanced programming environment, the C container the
highest performance (a detailed performed evaluation
is provided by Humphrey et all*®l); and (Python en-
thusiasts would argue) the Python container the nicest
language. If developing new services in Java using GT4,
see the tutorial text*¢] and its accompanying Web site.

Numerous projects are developing exciting services
and applications based on GT4 containers. For exam-
ple, the Belfast eScience Center has 1.5 million lines of
GT4 Java code (converted from GT3, a process that re-

Message-level Message-level Trans level r
security security ransport-leve] .
w/X.509 credentials w/Usernames and security User appllcatlons
passwords w/X.509 credentials { 1 1 1

izati SAML and I SAML and N T S S S H
Authorization grid-mapfile Grid-mapfile grid-mapfile ' —_— E

i
Delegati X.509 Proxy X.509 Proxy . Custom £ i
clegation certitlcates/WS- certificates/WS- i 8| Custom WSRF Web =
Trust Trust = Web services 2
ity o sntity = i on = 1
Authentication X‘ZgrgTi%ncife Zm) Username/password X‘ig?t;f?éla:g:") E g services i & g H
< | :; WS-Addressing, WSRF, S E
Message WS-Security " P WS-Notification !
protection | WS-SecureConversation WS-Security TLS ; O ;
] . i
Message format SOAP SOAP SOAP E WSDL, SOAP, WS-Security '
I e e e e e e e mmemmm e e mmememmemmmmemmm-————————————— -

Fig.4. GT4 security protocols (see text for details). From [16].

Fig.5. Capabilities of a GT4 container.

518

quired “relatively few changes in service code” [47]), im-
plementing a range of applications including a digital
video management system for the BBC, and the China
Grid Support Package provides a rich set of services for
eScience and education built on the GT4 Java container.

Several projects have developed interactive develop-
ment environments (IDEs) for GT4 services. The In-
troduce system from Ohio State University is a mature
example of such a system.

4.6 How Do I Do More Complicated Things?

GT4 services and libraries do not provide complete
solutions to many distributed computing problems: to
do anything more complex than submit a job or move
a file, you must use GT4 software in conjunction with
other tools and/or your own code—or access a (GT-
based) service that provides the capabilities that you
require[*8],

In analyzing how people use Globus software, we
find that similar patterns tend to reoccur across dif-
ferent projects and application domains. Thus, we have
launched an effort to document these solutions**! and
how they can be implemented using components of the
Globus ecosystem.

5 Processes, Results, and Evaluation

The Globus Alliance’s software engineering pro-
cesses have matured, driven by both increased re-
sources and more aggressive users able to contribute to
testing. These processes now include:

e extensive unit test suites and the use of test cover-
age tools to evaluate coverage;

e frequent automated ezxecution of build and test
suites on more than 20 platforms, via both local systems
and the NMI GRIDS Center’s distributed build/test fa-
cility;

e extensive performance test suites used to evaluate
various aspects of component performance, including la-
tency, throughput, scalability, and reliability;

e a cross-GT documentation plan, managed by a ded-
icated documentation specialist, to ensure complete cov-
erage and uniform style for all components;

e a well-defined community testing process, which in
the case of GT4 included a six-month alpha and beta-
testing program with close to 200 participants;

e an issue tracking system based on bugzilla, used to
track error reports and feature requests, and the work
associated with those issues;

GT4 performance is discussed in various reports
that address the performance of different Web Services
containers, including GT4’s Java, C, and Python!*;
the GT4 implementation of GridFTPBY: and the GT4
replica location service[®°],

The UK eScience program has released an external
evaluation of GT4[*7]. This detailed report speaks fa-
vorably of the overall quality, usability, and performance

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

of the GT4 code and its documentation. It notes, for
example, that “GT4 installation was straightforward”,
“GT4 services demonstrated significant improvements
in performance and reliability over their GT3 versions”,
and “GT4 package descriptions were of a high quality,
well structured, and accurate”.

6 Contributing

A large and diverse Globus community is working
hard to improve the scope and quality of the Globus
software. I hope that you, the reader, will feel inspired
to contribute also. There are several ways in which you
can do so.

Use the software and report your experiences. Sim-
ply using the software and reporting back on your expe-
riences, positive or negative, can be immensely helpful.
Reports of problems encountered, particularly when well
documented, help guide bug fixes and/or prioritize work
on new features. Reports of successful deployments and
applications can help justify continued support for the
development of the software.

Develop documentation and examples. Despite con-
siderable progress, we remain in desperate need of code
examples and associated documentation that can help
other users to start work with Globus software or re-
lated tools. Take the time to document your successful
application, and you will be repaid in gratitude from
other users.

Contribute to software development. The list of new
features wanted by users is always far greater than cur-
rent Globus developers can handle. You can contribute
bug fixes, test cases, new modules, or even entirely new
components. In early 2006, we unveiled “dev.globus” to
facilitate such contributions: see the next section.

7 Dev.Globus Community

Dev.globus (see http://dev.globus.org), unveiled in
early 2006, comprises both a governance process and
an infrastructure designed to allow for broad contribu-
tions to Globus software. Modeled closely on Apache,
dev.globus includes the following components.

e A modular architecture by which the Globus soft-
ware is partitioned into a number of distinct projects,
each with its own separately managed code base.
(Within this structure, the Globus Toolkit exists as a
project focused on creating and distributing a quality-
controlled distribution that incorporates software from
many, but not necessarily all, Globus projects.)

e A governance structure that places the technical
decisions concerning each component in the hands of
its principal contributors (its “committers”). A Globus
Management Committee (GMC) provides architectural
guidance and conflict resolution.

e An infrastructure for hosting Globus projects. This
infrastructure includes source code repositories, email
lists, wikis, and build and test mechanisms.

Ian Foster: Globus Toolkit Version 4: Software for Service-Oriented Systems

While dev.globus is (at the time of writing) still in
its infancy, it is so far proving highly successful, with
the number of both components and developers grow-
ing rapidly.

8 Related Work

Globus builds on a rich tradition of prior work in dis-
tributed systems. The metacomputing®!!, Legion[®?!
and I-WAY®3! initiatives of the past decade have also
been influential, as has contemporary work in such ar-
eas as Web Services, virtual machines, and peer-to-peer
architecture. The PlanetLab community!® is address-

ing similar concerns, as discussed in a recent article!>®!.

9 Futures

We are entering an exciting time for Globus, due to
the confluence of the following factors:

e the completion of GT4 means that the Globus soft-
ware now has a solid Web Services base on which to
build new services and capabilities;

e sustained funding for eScience support will allow
us to accelerate efforts aimed at meeting demands for
ever-greater scalability, functionality, usability, and so
forth;

e the creation of entities dedicated to the support
needs of industry means that commercial adoption (and
contributions) will accelerate;

e a rapidly growing user community is increasing the
quantity and quality of user feedback, code contribu-
tions, and components within the larger Globus ecosys-
tem;

e revisions to the Globus infrastructure and gover-
nance processes, via dev.globus, are allowing the set of
contributors to the software and documentation to ex-
pand.

The Globus community is engaged in many activi-
ties aimed at developing the capabilities, usability, and
range of application of the software. Examples include
higher-level data management services, dynamic service
deployment and management[®® interactive develop-
ment environments, attribute and trust management for
virtual organizations, more powerful and scalable work-
flow management, advance reservation and agreement
negotiation for different resource types, and monitoring
and problem determination.

Acknowledgements I report here on the
work of many talented colleagues, as detailed at
www.globus.org. The core team is currently based
primarily at Argonne National Lab, U. Chicago, the
USC Information Sciences Institute, U. Edinburgh, the
Royal Institute of Technology, the National Center for
Supercomputing Applications, and Univa Corporation,
but many others have also contributed to Globus code,
documentation, and testing, and/or made our work
worthwhile by using the software.

519

References

[1] Foster I, Kesselman C, Tuecke S. The anatomy of the Grid:
Enabling scalable virtual organizations. International Jour-
nal of Supercomputer Applications, 2001, 15(3): 200-222.

[2] Booth D, Haas H, McCabe F et al Web Ser-

vices Architecture. W3C, Working Draft, 2003.

http://www.w3.org/TR /2003 /WD-ws-arch-20030808/.

Kendall S C, Waldo J, Wollrath A, Wyant G. A Note on Dis-

tributed Computing. Technical Report TR-94-29, Sun Mi-

crosystems, 1994.

[4] Foster I, Tuecke S. Describing the elephant: The different
faces of IT as service. ACM Queue, 2005, 3(6): 26—29.

[5] The TeraGrid Project. 2006, www.teragrid.org.

[6] Open Science Grid (OSG). 2006, www.opensciencegrid.org.

[7] Foster I et al. The Grid2003 production Grid: Principles and
practice. In IEEFE Int. Symp. High Performance Distributed
Computing, 2004, IEEE Computer Science Press.

[8] Cancer Bioinformatics Grid (caBIG). 2006, http://cabig.nci.
nih.gov.

[9] Enabling Grids for eScience (EGEE). 2006, http://public.eu-
egee.org.

[10] LHC Computing Grid. 2006, http://lcg.web.cern.ch/LCG.

[11] UK National Grid Service. 2006, http://www.ngs.ac.uk.

[12] China Grid Project. 2006, http://www.chinagrid.org.

[

[

[3

13] China National Grid. 2005, http://www.cngrid.org.

14] NAREGI: National Research Grid Initiative. 2006, http://
www.naregi.org.

[15] Foster I, Czajkowski K, Ferguson D et al. Modeling and man-
aging state in distributed systems: The role of OGSI and
WSRF. In Proc. the IEEE, 2005, 93(3): 604-612.

[16] Welch V. Globus Toolkit Version 4 Grid Security Infrastruc-
ture: A Standards Perspective. 2004, http://www.globus.
org/toolkit/docs/4.0/security / GT4-GSI-Overview.pdf.

[17] Lang B, Foster I, Siebenlist F et al. A multipolicy authoriza-
tion framework for grid security. In The 5th IEEE Int. Symp.
Network Computing and Applications, 2006.

[18] Czajkowski K, Fitzgerald S, Foster I, Kesselman C. Grid in-
formation services for distributed resource sharing. In The
10th IEEE Int. Symp. High Performance Distributed Com-
puting, 2001, IEEE Computer Society Press, LA, CA, USA,
2001, pp.181-184.

[19] Czajkowski K, Foster I, Kesselman C. Agreement-based re-
source management. In Proc. The IEEE, 2005, 93(3): 631—
643.

[20] Deelman E, Singh G, Su M H et al. Pegasus: A framework
for mapping complex scientific workflows onto distributed sys-
tems. Scientific Programming, 2005, 13(3): 219-237.

[21] Foster I, Voeckler J, Wilde M, Zhao Y. The virtual data grid:
A new model and architecture for data-intensive collabora-
tion. In Conf. Innovative Data Systems Research, CA, USA,
2003.

[22] Tanaka Y, Nakada H, Sekiguchi S et al. Ninf-G: A reference
implementation of RPC based programming middleware for
grid computing. Journal of Grid Computing, 2002, 1(1): 41—
51.

[23] Abramson D, Giddy J, Kotler L. High performance paramet-
ric modeling with Nimrod/G: Killer application for the global
grid? In Proc. the Int. Parallel and Distributed Processing
Symposium (IPDPS), Cancun, Mexico, 2000, pp.520-528.

[24] Rodriguez A, Sulakhe D, Marland E et al. A grid-enabled
service for high-throughput genome analysis. In Workshop on
Case Studies on Grid Applications, Berlin, Germany, 2004.

[25] Karonis N, Toonen B, Foster I. MPICH-G2: A grid-enabled
implementation of the message passing interface. Journal of
Parallel and Distributed Computing, 2003, 63(5): 551-563.

[26] Dong S, G K, Karonis N. Cross-site computations on the Ter-
aGrid. Computing in Science & Engineering, 2005, 7(5): 14—
23.

[27] Keahey K, Foster I, Freeman T, Zhang X. Virtual workspaces:
Achieving quality of service and quality of life in the grid. Sci-
entific Programming, 2005, 13(4): 265-2756.

520

[28] Barham P, Dragovic B, Fraser K et al. Xen and the art of
virtualization. ACM Symposium on Operating Systems Prin-
ciples, Bolton Landing, NY, USA, 2003, pp.164-177.
Pearlman L, Kesselman C, Gullapalli S et al. Distributed hy-
brid earthquake engineering experiments: Experiences with
a ground-shaking grid application. In The 13th IEEE Int.
Symp. High Performance Distributed Computing, Honolulu,
Hawaii, 2004, pp.14—-23.

Allcock W, Chervenak A, Foster I et al. Data grid tools: En-
abling science on big distributed data. SciDAC Conference,
San Francisco CA, USA, 2005, Institute of Physics Conf. Se-
ries, 16: 571-575.

Allcock B, Bresnahan J, Kettimuthu R et al. The Globus
Striped GridFTP Framework and Server. In Proc. the
ACM/IEEE SC2005 Conf. High Performance Networking
and Computing, Seattle, USA, Nov. 2005, p.54.

Allcock W, Foster I, Madduri R. Reliable data transport: A
critical service for the grid. In Building Service Based Grids
Workshop, 2004, Global Grid Forum 11.

Chervenak A, Deelman E, Foster I et al. Giggle: A framework
for constructing scalable replica location services. SC’02:
High Performance Networking and Computing, Baltimore,
Maryland, USA, 2002.

Chervenak A, Schuler R, Kesselman C et al. Wide area
data replication for scientific collaborations. In The 6th
IEEE/ACM Int. Workshop on Grid Computing, 2005.
Atkinson M, Chervenak A, Kunszt P et al. Data Access, In-
tegration, and Management. The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann, 2004.

Schopf J M, Raicu I, Pearlman L et al. Monitoring and Dis-
covery in a Web Services Framework: Functionality and Per-
formance of Globus Toolkit MDS4. Technical Report, Math-
ematics and COmputer Science Division, Argonne National
Laboratory, 2006.

Bernholdt D, Bharathi S, Brown D et al. The earth system
grid: Supporting the next generation of climate modeling re-
search. In Proc. the IEEE, 2005, 93(3): 485-495.

Gasser M, McDermott E. An architecture for practical delega-
tion in a distributed system. In 1990 IEEE Symp. Research
in Security and Privacy, IEEE Press, 1990, pp.20-30.

Foster I, Kesselman C, Tsudik G, Tuecke S. A security ar-
chitecture for computational grids. In The 5th ACM Conf.
Computer and Communications Security, 1998, pp.83—91.
Novotny J, Tuecke S, Welch V. An online credential repository
for the grid: MyProxy. In The 10th IEEE Int. Symp. High
Performance Distributed Computing, San Francisco, 2001,
IEEE Computer Society Press.

Welch V, Barton T, Keahey K et al. Attributes, anonymity,
and access: Shibboleth and Globus integration to facilitate
grid collaboration. PKI Conference, 2005.

NSF Middleware Initiative. KX.509/KCA, 2002,
http://www.nsf-middleware.org/documentation/KX509KCA /.
EU DataGrid VOMS Architecture v1.1. 2003, http://grid-
auth.infn.it/docs/VOMS-v1_1.pdf.

Chadwick D W, Otenko A. The PERMIS X.509 role based
privilege management infrastructure. In The 7th ACM Sym-
posium on Access Control Models and Technologies, Mon-
terey, USA, 2002, pp.135-170.

Humphrey M, Wasson G, Jackson K et al. A comparison of
WSRF and WS-notification implementations: Globus toolkit
V4, pyGridWare, WSRF': Lite, and WSRF. NET. In The 14th
IEEE Int. Symp. High Performance Distributed Computing,
Research triangle Park, NC, USA, 2005.

[29]

(30]

(31]

(32]

33]

34]

(35]

(36]

37

(38]

39]

[40]

[41]

[42]
[43]

[44]

[45]

J. Comput. Sci. & Technol., July 2006, Vol.21, No.4

[46] Sotomayor B, Childers L. Globus Toolkit 4: Programming
Java Services. Morgan Kaufmann, 2005.

Harmer T, Stell A, McBride D. UK Engineering Task Force
Globus Toolkit Version 4 Middleware Evaluation. UK Tech-
nical Report UKeS_2005-03, 2005.
Foster 1. Service-oriented science.
817.

Grid Solutions. 2005, http://www.globus.org/solutions.
Chervenak A L, Palavalli N, Bharathi S et al. Performance
and scalability of a replica location service. In The 1/th IEEE
Int. Symp. High Performance Distributed Computing, Hon-
olulu, Hawaii, 2004.

Catlett C, Smarr L. Metacomputing. Communications of the
ACM, 1992, 35(6): 44-52.

Grimshaw A S, Wulf W A. The legion vision of a worldwide
virtual computer. Communications of the ACM, 1997, 40(1):
39-45.

DeFanti T, Foster I, Papka M et al. Overview of the [F-WAY:
Wide area visual supercomputing. International Journal of
Supercomputer Applications, 1996, 10(2): 123-130.

Bavier A, Bowman M, Chun B et al. Operating system sup-
port for planetary-scale services. In 1st Symposium on Net-
work Systems Design and Implementation, 2004, pp.253—266.
Ripeanu M, Bowman M, Chase J et al. Comparing globus
and PlanetLab resource management solutions. In The 13th
IEEE Int. Symp. High Performance Distributed Computing,
Honolulu, Hawaii, 2004, pp.246—255.

Qi L, Jin H, Foster I, Gawor J. HAND: Highly Available Dy-
namic Deployment Infrastructure for Globus Toolkit 4. 2006.

(47]

[48] Science, 2005, 308: 814—
[49]
[50]

[51]

[52]

(53]

[54]

[55]

[56]

Ian Foster received a B.S. (Hons
I) degree in computer science from
the University of Canterbury in
Christchurch, New Zealand and a
Ph.D. degree in computer science
from Imperial College, London. Fos-
ter is a senior scientist at Argonne
National Laboratory, Arthur Holly
Compton distinguished service pro-
fessor of computer science at the Uni-
versity of Chicago, and director of the Computation Insti-
tute at the University and Argonne. Foster’s research inter-
ests are in distributed and parallel computing and compu-
tational science. He has published six books and over 300
articles and technical reports on these and related topics.
Foster is also chair of the Globus Management Committee
that leads the Globus community, and is Chief Open Source
Strategist at Univa Corporation, a company he co-founded
to foster and promote commercial applications of Grid tech-
nology. Dr. Foster is a fellow of the American Association
for the Advancement of Science and the British Computer
Society. His awards include the British Computer Society’s
award for technical innovation, the Global Information In-
frastructure (GII) Next Generation award, the British Com-
puter Society’s Lovelace Medal, R&D Magazine’s Innovator
of the Year, and DSc Honoris Causa from the University of
Canterbury.

