
The Data Grid:

Towards an Architecture for the Distributed Management

and Analysis of Large Scienti�c Datasets

Ann Chervenak� Ian Foster$+ Carl Kesselman� Charles Salisbury$ Steven Tuecke$

� Information Sciences Institute, University of Southern California
$ Mathematics and Computer Science Division, Argonne National Laboratory

+ Department of Computer Science, The University of Chicago

Abstract

In an increasing number of scienti�c disciplines, large data collections are emerging as impor-

tant community resources. In this paper, we introduce design principles for a data management

architecture called the Data Grid. We describe two basic services that we believe are fundamental

to the design of a data grid, namely, storage systems and metadata management. Next, we explain

how these services can be used to develop higher-level services for replica management and replica

selection. We conclude by describing our initial implementation of data grid functionality.

1 Introduction

In an increasing number of scienti�c disciplines, large data collections are emerging as important

community resources. In domains as diverse as global climate change, high energy physics, and

computational genomics, the volume of interesting data is already measured in terabytes and will soon

total petabytes. The communities of researchers that need to access and analyze this data (often

using sophisticated and computationally expensive techniques) are often large and are almost always

geographically distributed, as are the computing and storage resources that these communities rely

upon to store and analyze their data [17].

This combination of large dataset size, geographic distribution of users and resources, and com-

putationally intensive analysis results in complex and stringent performance demands that are not

satis�ed by any existing data management infrastructure. A large scienti�c collaboration may gen-

erate many queries, each involving access to|or supercomputer-class computations on|gigabytes or

terabytes of data. E�cient and reliable execution of these queries may require careful management

of terabyte caches, gigabit/s data transfer over wide area networks, coscheduling of data transfers

and supercomputer computation, accurate performance estimations to guide the selection of dataset

replicas, and other advanced techniques that collectively maximize use of scarce storage, networking,

and computing resources.

The literature o�ers numerous point solutions that address these issues (e.g., see [17, 14, 19, 3]).

But no integrating architecture exists that allows us to identify requirements and components common

to di�erent systems and hence apply di�erent technologies in a coordinated fashion to a range of data-

intensive petabyte-scale application domains.

Motivated by these considerations, we have launched a collaborative e�ort to design and produce

such an integrating architecture. We call this architecture the data grid, to emphasize its role as a

specialization and extension of the \Grid" that has emerged recently as an integrating infrastructure

1

for distributed computation [10, 20, 15]. Our goal in this e�ort is to de�ne the requirements that a

data grid must satisfy and the components and APIs that will be required in its implementation. We

hope that the de�nition of such an architecture will accelerate progress on petascale data-intensive

computing by enabling the integration of currently disjoint approaches, encouraging the deployment

of basic enabling technologies, and revealing technology gaps that require further research and devel-

opment. In addition, we plan to construct a reference implementation for this architecture so as to

enable large-scale experimentation.

This work complements other activities in data-intensive computing. Work on high-speed disk

caches [21] and on tertiary storage and cache management [5, 19] provides basic building blocks.

Work within the digital library community is developing relevant metadata standards and metadata-

driven retrieval mechanisms [16, 6, 1] but has focused less on high-speed movement of large data

objects, a particular focus of our work. The Storage Resource Broker (SRB) [2] shows how diverse

storage systems can be integrated under uniform metadata-driven access mechanisms; it provides a

valuable building block for our architecture but should also bene�t from the basic services described

here. The High Performance Storage System (HPSS) [24] addresses enterprise-level concerns (e.g., it

assumes that all accesses occur within the same DCE cell); our work addresses new issues associated

with wide area access from multiple administrative domains.

In this paper, we �rst review the principles that we are following in developing a design for a

data grid architecture. Then, we describe two basic services that we believe are fundamental to the

design of a data grid, namely, storage systems and metadata management. Next, we explain how

these services can be used to develop various higher-level services for replica management and replica

selection. We conclude by describing our initial implementation of data grid functionality.

2 Data Grid Design

The following four principles drive the design of our data grid architecture. These principles derive

from the fact that data grid applications must frequently operate in wide area, multi-institutional,

heterogeneous environments, in which we cannot typically assume spatial or temporal uniformity of

behavior or policy.

Mechanism neutrality. The data grid architecture is designed to be as independent as possible of

the low-level mechanisms used to store data, store metadata, transfer data, and so forth. This goal

is achieved by de�ning data access, third-party data mover, catalog access, and other interfaces that

encapsulate peculiarities of speci�c storage systems, catalogs, data transfer algorithms, and the like.

Policy neutrality. The data grid architecture is structured so that, as far as possible, design

decisions with signi�cant performance implications are exposed to the user, rather than encapsulated

in \black box" implementations. Thus, while data movement and replica cataloging are provided as

basic operations, replication policies are implemented via higher-level procedures, for which defaults

are provided but that can easily be substituted with application-speci�c code.

Compatibility with Grid infrastructure. We attempt to overcome the di�culties of wide area, multi-

institutional operation by exploiting underlying Grid infrastructure [10, 20, 15] (e.g., Globus [9]) that

provides basic services such as authentication, resource management, and information. To this end, we

structure the data grid architecture so that more specialized data grid tools are compatible with lower-

level Grid mechanisms. This approach also simpli�es the implementation of strategies that integrate,

for example, storage and computation.

Uniformity of information infrastructure. As in the underlying Grid, uniform and convenient

access to information about resource structure and state is emphasized as a means of enabling runtime

adaptation to system conditions. In practice, this means that we use the same data model and interface

2

Storage System

DPSS HPSS

Metadata Repository

LDAP MCAT

Resource Management

LSF DIFFSERV NWS

Replica Selection

Replica Management

Generic Grid ServicesData Grid Specific Services

Core Services

High Level
Components

Security Instrumentation

Kerberos NetLogger

Service Service

Figure 1: Major components and structure of the data grid architecture

to access the data grid's metadata and replica catalogs as are used in the underlying Grid information

infrastructure.

These four principles lead us to develop a layered architecture (Figure 1), in which the lowest layers

provide high-performance access to an orthogonal set of basic mechanisms, but do not enforce speci�c

usage policies. For example, we de�ne high-speed data movement functions with rich error interfaces

as a low-level mechanism, but do not encode within these functions how to respond to storage system

failure. Rather, such policies are implemented in higher layers of the architecture, which build on the

mechanisms provided by the basic components.

This approach is motivated by the observation that achieving high performance in speci�c applica-

tions often requires that an implementation exploit domain-speci�c or application-speci�c knowledge.

In data grids, as in other Grid systems, this focus on simple, policy-independent mechanisms will

encourage and enable broad deployment without limiting the range of applications that can be im-

plemented. By limiting application speci�c behaviors to the upper layers of the architecture, we can

promote reuse of the basic mechanisms while delivering high-performance and specialized capabilities

to the end user and application.

3 Core Data Grid Services

We now turn our attention to the basic services required in a data grid architecture. We focus in

particular on two services that we view as fundamental: data access and metadata access. The data

access service provides mechanisms for accessing, managing, and initiating third-party transfers of

data stored in storage systems. The metadata access service provides mechanisms for accessing and

managing information about data stored in storage systems. This explicit distinction between storage

and metadata is worth discussing briey. In some circumstances, for example when data is being stored

in a database system, there are advantages to combining metadata and storage into the same abstrac-

tion. However, we believe that keeping these concepts separate at the architectural level enhances

exibility in storage system implementation while having minimal impact on the implementation of

behaviors that combine metadata access with storage access.

3

3.1 Storage Systems and Data Access

In a Grid environment, data may be stored in di�erent locations and on di�erent devices with di�erent

characteristics. As we discussed above, mechanism neutrality implies that applications should not

need to be aware of the speci�c low-level mechanisms required to access data at a particular location.

Instead, applications should be presented with a uniform view of data and with uniform mechanisms for

accessing that data. These requirements are met by the storage system abstraction and our prototype

API for data access.

3.1.1 Data Abstraction: Storage Systems

We introduce as a basic data grid component the storage system, which provides functions for creating,

destroying, reading, writing, and manipulating �le instances. A �le instance is the basic unit of

information in a storage system. It consists of a named, uninterpreted sequence of bytes. The use of

the term �le instance is not intended to imply that data must reside in a conventional �le system. A

�le instance may actually reside in a �le system, database or other storage system. For example, a

data grid implementation might use a system such as the Storage Resource Broker (SRB) to access

data stored within a database management system.

Note that our de�nition of a storage system is a logical one: a storage system can be implemented

by any storage technology that can support the required access functions. Implementations that target

Unix �le systems, HTTP servers, hierarchical storage systems such as HPSS, and network caches such

as the Distributed Parallel Storage System (DPSS) are certainly envisioned. In fact, a storage system

need not map directly to a single low-level storage device. For example, a distributed �le system that

manages �les distributed over multiple storage devices or even sites can serve as a storage system, as

can an SRB system that serves requests by mapping to multiple storage systems of di�erent types.

A storage system will associate a set of properties, including a name and attributes such as size

and access restrictions, with each of the �le instances that it contains. The name assigned to a �le

instance by a particular storage system is arbitrary and has meaning only to that storage system. In

many storage systems, a name will be a hierarchical directory path. In other systems such as SRB,

it may be a set of application metadata that the storage system maps internally to a physical �le

instance.

3.1.2 Data Access

The behavior of a storage system as seen by a data grid user is de�ned by an API that describes

the possible operations on storage systems and �le instances. Our understanding of the functionality

required in this API is still evolving, but it certainly should include support for remote requests to read

and/or write named �le instances and to determine �le instance attributes such as size. In addition,

to support optimized implementations of replica management services (discussed below) we require a

third party transfer operation to transfer the entire contents of a �le instance from one storage system

to another.

While the basic storage system functions are relatively simple, various data grid considerations can

increase the complexity of an implementation. For example, storage system access functions must be

integrated with the security environment of each site to which remote access is required [12]. Robust

performance within higher-level functions requires reservation capabilities within storage systems and

network interfaces [11]. Applications should be able to provide storage systems with hints concerning

access patterns, network performance, and so forth that the storage system can use to optimize its

behavior. Similarly, storage systems should be capable of characterizing and monitoring their own

performance; this information, when made available to storage system clients, allows them to optimize

4

their behavior. Finally, data movement functions must be able to detect and report errors. While

it may be possible to recover from some errors within the storage system, other errors may need to

reported back to the remote application that initiated the movement.

3.2 The Metadata Service

The second set of basic machinery that we require is concerned with the management of information

about the data grid itself, including information about �le instances, the contents of �le instances,

and the various storage systems contained in the data grid. We refer to this information as metadata.

The metadata service provides a means for publishing and accessing this metadata.

Various types of metadata can be distinguished. It has become common practice to associate with

scienti�c datasets metadata that describes the contents and structure of that data. The metadata

may describe the information content represented by the �le, the circumstances under which the data

was obtained, and/or other information useful to applications that process the data. We refer to this

as application metadata. Such metadata can be viewed as de�ning the logical structure or semantics

that should apply to the uninterpreted bytes that make up a �le instance or a set of �le instances. A

second type of metadata is used to manage replication of data objects; this replica metadata includes

information for mapping �le instances to particular storage system locations. Finally, system con�g-

uration metadata describes the fabric of the data grid itself: for example, network connectivity and

details about storage systems, such as their capacity and usage policy.

The metadata service provides a uniform means for naming, publishing, and accessing these dif-

ferent types of metadata. Each type of metadata has its own characteristics in terms of frequency and

mechanism of update and its logical relationship to other grid components and data items. Interesting

data management applications are likely to use several kinds of metadata. Although we have referred

to several di�erent types of metadata, we propose that a single interface be used for accessing all these

types.

Applications identify �les of interest by posing queries to a metadata service that includes a

metadata repository or catalog. Each query speci�es the characteristics of the desired data. The

metadata repository associates such characteristics with logical �les, which are entities with globally

unique names that may have one or more physical instances. Once the metadata service has identi�ed

logical �les with the desired attributes, the replica manager (described in Section 4.1) uses replica

metadata to locate the physical �le instance to be accessed.

The di�culty of specifying a general structure for all metadata is apparent when one considers

the variety of approaches used to describe application metadata. Some applications build a meta-

data repository from a speci�ed list of �le instances based on data stored in a self-describing format

(e.g., NetCDF, HDF). High energy physics applications are successfully using a specialized indexing

structure. The Digital Library community is developing sets of metadata for di�erent �elds (e.g., [1]).

Other user communities are pursuing the use of eXtended Markup Language (XML) [4] to represent

application metadata.

The situation is further complicated when one considers the additional requirements imposed by

large-scale data grid environments. Besides providing a means of integrating the di�erent approaches to

metadata storage and representation, the service must operate e�ciently in a distributed environment.

It must be scalable, supporting metadata about many entities being contributed by myriad information

sources located in a large number of organizations. The service must be robust in the face of failure,

and organizations should be able to assert local control over their information.

Analysis of these requirements leads us to conclude that the metadata service must be structured as

a hierarchical and distributed system. This approach allows us to achieve scalability, avoid any single

point of failure, and facilitate local control over data. Distribution does complicate e�cient retrieval,

5

but this di�culty can be overcome by having data organization exploit the hierarchical nature of the

metadata service.

This analysis leads us to propose that the metadata service be treated as a distributed directory

service, such as that provided by the Lightweight Directory Access Protocol (LDAP) [23]. Such systems

support a hierarchal naming structure and rich data models and are designed to enable distribution.

Mechanisms de�ned by LDAP include a means for naming objects, a data model based on named

collections of attributes, and a protocol for performing attribute-based searching and writing of data

elements. We have had extensive experience in using distributed directory services to represent general

Grid metadata [8], and we believe that they will be well suited to the metadata requirements of data

grids as well.

The directory hierarchy associated with LDAP provides a structure for organizing, replicating,

and distributing catalog information. However, the directory service does not specify how the data is

stored or where it is stored. Queries may be referred between servers, and the LDAP protocol can be

placed in front of a wide range of alternative information and metadata services. This capability can

provide a mechanism for the data grid to support a wide variety of approaches to providing application

metadata, while retaining a consistent overall approach to accessing that metadata.

3.3 Other Basic Services

The data grid architecture also assumes the existence of a number of other basic services, including

the following:

� An authorization and authentication infrastructure that supports multi-institutional operation.

The public key-based Grid Security Infrastructure (GSI) [12] meets our requirements.

� Resource reservation and co-allocation mechanisms for both storage systems and other resources

such as networks, to support the end-to-end performance guarantees required for predictable

transfers (e.g., [11]).

� Performance measurements and estimation techniques for key resources involved in data grid

operation, including storage systems, networks, and computers (e.g., the Network Weather Ser-

vice [25]).

� Instrumentation services that enable the end-to-end instrumentation of storage transfers and

other operations (e.g., NetLogger [22], Pablo [18], and Paradyn [13]).

4 Higher-Level Data Grid Components

A potentially unlimited number of components can exist in the upper layer of the data grid architecture.

Consequently, we will limit our discussion to two representative components: replica management and

replica selection.

4.1 Replica Management

The role of a Replica Manager is to create (or delete) copies of �le instances, or replicas, within

speci�ed storage systems. Note that a replica is a user-asserted correspondence between two physical

�les. Typically, replicas speci�ed in the catalog will be byte-for-byte copies of one another, but this is

not required by the Replica Manager. In the remainder of this section, we use the terms replica and

�le instance interchangeably.

6

Often, a replica is created because the new storage location o�ers better performance or availability

for accesses to or from a particular location. A replica might be deleted because storage space is

required for another purpose.

In this discussion, we assume that replicated �les are read only; we are not concerned with issues

of �le update and coherency. Thus, replicas are primarily useful for access to \published" data sets.

While this read only model is su�cient for many uses of scienti�c data sets, we intend to investigate

support for modifying the contents of �le instances in the future.

The Replica Manager maintains a repository or catalog. Entries in the catalog correspond to logical

�les and possibly collections of logical �les. Associated with each logical �le or collection are one or

more replicas or �le instances. The replica catalog contains mapping information from a logical �le or

collection to one or more physical instances of the object(s). Figure 2 in Section 5.3 shows an example

of a replica catalog for a data visualization application.

A data grid may (and indeed typically will) contain multiple replica catalogs. For example, a

community of researchers interested in a particular research topic might maintain a replica catalog for

a collection of data sets of mutual interest. It is possible to create hierarchies of replica catalogs to

impose a directory-like structure on related logical collections. In addition, the replica manager can

perform access control on entire catalogs as well as on individual logical �les.

Note that the existence of a replica manager does not determine when or where replicas are created,

or which replicas are to be used by an application, nor does it even require that every �le instance

be entered into a replica catalog. In keeping policy out of the de�nition of the replica manager,

we maximize the types of situations in which the replica manager will be useful. For example, a �le

instance that is not entered into the catalog may be considered to be in a local \cache" and available for

local use only. Designing this as a policy rather than coupling �le movement with catalog registration

in a single atomic operation explicitly acknowledges that there may be good, user-de�ned reasons for

satisfying application needs by using �les that are not registered in a replica catalog.

4.2 Replica Selection and Data Filtering

Another high-level service provided in the data grid is replica selection. Replica selection is the process

of choosing a replica that will provide an application with data access characteristics that optimize a

desired performance criterion, such as absolute performance (i.e. speed), cost, or security. The selected

�le instance may be local or accessed remotely. Alternatively the selection process may initiate the

creation of a new replica whose performance will be superior to the existing ones.

Where replicas are to be selected based on access time, Grid information services can provide

information about network performance, and perhaps the ability to reserve network bandwidth, while

the metadata repository can provide information about the size of the �le. Based on this, the selector

can rank all of the existing replicas to determine which one will yield the fastest data access time.

Alternatively, the selector can consult the same information sources to determine whether there is a

storage system that would result in better performance if a replica was created on it.

A more general selection service may consider access to subsets of a �le instance. Scienti�c exper-

iments often produce large �les containing data for many variables, time steps, or events, and some

application processing may require only a subset of this data. In this case, the selection function may

provide an application with a �le instance that contains only the needed subset of the data found in

the original �le instance. This can reduce the amount of data that must be accessed or moved.

This type of replica management has been implemented in other data-management systems. For

example, STACS is often capable of satisfying requests from High Energy Physics applications by

extracting a subset of data from a �le instance. It does this using a complex indexing scheme that

represents application metadata for the events contained within the �le. Other mechanisms for provid-

7

ing similar function may be built on application metadata obtainable from self-describing �le formats

such as NetCDF or HDF.

Providing this capability requires the ability to invoke �ltering or extraction programs that un-

derstand the structure of the �le and produce the required subset of data. This subset becomes a

�le instance with its own metadata and physical characteristics, which are provided to the replica

manager. Replication policies determine whether this subset is recognized as a new logical �le (with

an entry in the metadata repository and a �le instance recorded in the replica catalog), or whether

the �le should be known only locally, to the selection manager.

Data selection with subsetting may exploit Grid-enabled servers, whose capabilities involve com-

mon operations such as reformatting data, extracting a subset, converting data for storage in a di�erent

type of system, or transferring data directly to another storage system in the Grid. The utility of this

approach has been demonstrated as part of the Active Data Repository [7]. The subsetting function

could also exploit the more general capabilities of a computational Grid such as that provided by

Globus. This o�ers the ability to support arbitrary extraction and processing operations on �les as

part of a data management activity.

5 Implementation Experiences

In this section, we describe our initial design of catalogs for metadata and replica management. We

used these catalogs at the Supercomputing '99 conference to support two application demonstrations:

climate modeling and data visualization. In this section, we describe our experiences and the lessons

learned from our prototype implementation.

5.1 An LDAP Implementation

We used the Lightweight Distributed Access Protocol (LDAP) to construct our prototype catalogs.

Information in an LDAP catalog is organized in a tree structure known as a Directory Information

Tree (DIT). Information in a directory or catalog resides in nodes that are placed in a hierarchical

relationship.

For the climate modeling application, scientists constructed an LDAP catalog that included both

metadata and physical location information for the �les in the data collection. For the data visualiza-

tion application, we constructed separate metadata and replica catalogs for managing the data. These

catalogs are described in detail below.

5.2 Climate Modeling Application

First, we describe the LDAP catalog used in the climate modeling application. The DIT for the

climate application consisted of a root node, a node for each of four collections, and a node for each

logical �le in the collection. The application metadata was encoded in XML and stored in the node

for the collection. A query for a particular time-step or variable could be mapped to a speci�c logical

�le. The information for the logical �le contained the storage system and path name where the data

was located plus a template for constructing the instance �le name. This information was used to

construct a URL for the data. The URL was passed to a �le transfer interface which moved the data

into a local cache for processing.

For this prototype, the user was presented with a list of several structurally identical catalogs,

each corresponding to a single replica of the data set. The user selected one catalog to be used to

locate data. This prototype demonstrated the ability to map a query based on application metadata

into a URL using an LDAP catalog, and to move the data using a general purpose transfer API.

8

Subsequent designs will provide each catalog with location information for multiple replicas. Tools

will be developed to assist in the selection of data source based on user speci�ed criteria (e.g. best

performance).

5.3 Data Visualization Application

A second catalog was built to locate �les for a distance visualization application, in which a desktop

visualization client streamed data from remote storage systems. Each �le corresponds to one timestep

in a series. For example, output from an astrophysical simulation developed at the University of

Chicago \FLASH" center includes three data sets. Each of these data sets includes up to 486 timestep

�les. In addition, each timestep �le can be represented in di�erent resolutions as well as di�erent

data layouts, such as big-endian or little-endian. The result is that there are several thousand �les in

the Flash dataset. In the replica catalog used in these initial experiments, each �le is represented by

several objects in the LDAP catalogs. Figure 2 shows example objects in a replica catalog hierarchy

for this distance visualization application.

Based on our experience with this prototype, we concluded that the present implementation scales

poorly for datasets like Flash. In particular, when data sets include hundreds of �les in multiple

data layouts and �le formats, the current Replica Catalog implementation generates thousands of

objects. This large number of objects slowed directory searches and increased complexity by requiring

a distributed catalog implementation.

We have made several changes to the design as a result of this experience. To improve our ability

to locate sets of �les e�ciently, we have increased support for specifying collections of logical �les.

We associate location information with each collection, making it possible to avoid describing each

�le individually. A single lookup is su�cient to locate the storage system and path to the collection,

and a template can be used to map the logical �le name to the physical �le name. This also greatly

reduces the storage space required. Our new design will provide a more scalable solution in terms of

both performance and catalog storage requirements.

5.4 Separation of Functionality

Another lesson learned from our prototype implementation is the importance of distinguishing the

functions of metadata and replica management. Ideally, the functions of the Metadata and Replica

catalogs should be as distinct as possible. Any information that describes the contents of data �les and

collections should be stored in the Metadata Catalog. Such information includes objects and attributes

related to the structure of data sets and �le formats. Any mapping information that describes how

particular logical �les or collections are stored or replicated on storage systems should be maintained

in the Replica Catalog.

6 Status of the Data Grid Implementation

We have made progress on several fronts in our e�ort to identify the basic low-level services for a data

grid architecture. We have a preliminary design of the data access API. This API provides a standard

interface to storage systems, including create, delete, open, close, read and write operations on �le

instances. This interface also supports storage to storage transfers. For this prototype API design, we

have implemented interfaces to several storage systems, including local �le access, HTTP and FTP

servers, and DPSS network disk caches.

As described in the last section, we have also implemented replica management and metadata

services. These services use LDAP directories to store attribute information about �le instances,

9

replicaInfo=gsiftp:/

--storageDN

--instanceDN

--replicaURL

ReplicaCatalog

LogicalCollection=Lavalamp LC=Lavalamp-x86 LC=Flash-x86 LC=Flash

LC=bsqr LC=rdump LC=r53d

LC=cube128_uchar LC=cube256_uchar LC=cube64_uchar

logicalFile=lin.000001 lf=lin.000485
--instanceDN

--instanceDN

...

 --instanceDN

 --instanceDN

replicaInfo=file://...

--storageDN

--instanceDN

--replicaURL

Figure 2: The structure of a replica catalog.

10

storage systems, logical �les, and replica catalogs. Using these attributes, we can query the metadata

and replica catalogs as well as the Grid information system to �nd the replicas associated with a

logical �le, estimate their performance, and select among replicas according to particular performance

metrics. We described our experiences using these catalogs for two applications: climate modeling

and data visualization.

This work represents the �rst steps in our e�ort to create an integrating architecture for data-

intensive petabyte-scale application domains. Performance studies of the data access API are under

way, and we plan to further explore basic services such as instrumentation.

Acknowledgments

We gratefully acknowledge helpful discussions with Steve Fitzgerald, Bill Johnston, Reagan Moore,

Richard Mount, Harvey Newman, Arie Shoshani, Brian Tierney and other participants in the DOE

\Earth System Grid" and \Particle Physics Data Grid" projects. This work was supported in part

by the Mathematical, Information, and Computational Sciences Division subprogram of the O�ce of

Computational and Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-

38.

References

[1] M. Baldonado, C. Chang, L. Gravano, and A. Paepcke. The Stanford digital library metadata

architecture. Intl J. Digital Libraries, 1(2):108{121, 1997.

[2] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, and Michael Wan. The SDSC storage resource

broker. In Proceedings of CASCON'98 Conference. 1998.

[3] M. Beck and T. Moore. The Internet2 distributed storage infrastructure project: An architecture

for internet content channels. Computer Networking and ISDN Systems, 30(22-23):2141{2148,

1998.

[4] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. The extensible markup language

(xml) 1.0. W3C recomendation, World Wide Web Consortium, February 1998. See

http://www.w3.org/TR/1998/REC-xml-19980210.

[5] L.T. Chen, R. Drach, M. Keating, S. Louis, D. Rotem, and A. Shoshani. E�cient organization

and access of multi-dimensional datasets on tertiary storage systems. Information Systems Special

Issue on Scienti�c Databases, 20(2):155{83, 1995.

[6] S. Cousins, H. Garcia-Molina, S. Hassan, S. Ketchpel, M. Roscheisen, and T. Winograd. Towards

interoperability in digital libraries. IEEE Computer, 29(5), 1996.

[7] Renato Ferreira, Tahsin Kurc, Michael Beynon, Chialin Chang, Alan Sussman, and Joel Saltz.

Object-relational queries into multidimensional databases with the active data repository. Inter-

national Journal of Supercomputer Applications, 1999.

[8] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A directory

service for con�guring high-performance distributed computations. In Proc. 6th IEEE Symp. on

High Performance Distributed Computing, pages 365{375. IEEE Computer Society Press, 1997.

11

[9] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International

Journal of Supercomputer Applications, 11(2):115{128, 1997.

[10] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing Infrastructure.

Morgan Kaufmann Publishers, 1999.

[11] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A distributed resource

management architecture that supports advance reservations and co-allocation. In Proceedings of

the International Workshop on Quality of Service, pages 27{36, 1999.

[12] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for computational

grids. In ACM Conference on Computers and Security, pages 83{91. ACM Press, 1998.

[13] Je�rey Hollingsworth and Bart Miller. Instrumentation and measurement. In [10], pages 339{365.

[14] William Johnston. Realtime widely distributed instrumentation systems. In [10], pages 75{103.

[15] William E. Johnston, Dennis Gannon, and Bill Nitzberg. Grids as production computing envi-

ronments: The engineering aspects of NASA's Information Power Grid. In Proc. 8th IEEE Symp.

on High Performance Distributed Computing. IEEE Computer Society Press, 1999.

[16] M. Lesk. Practical Digital Libraries: Books, Bytes, and Bucks. Morgan Kaufmann Publishers,

1997.

[17] Reagan Moore, Chaitanya Baru, Richard Marciano, Arcot Rajasekar, and Michael Wan. Data-

intensive computing. In [10], pages 105{129.

[18] Daniel Reed and Randy Ribler. Performance analysis and visualization. In [10], pages 367{393.

[19] A. Shoshani, L. M. Bernardo, H. Nordberg, D. Rotem, and A. Sim. Storage management for

high energy physics applications. In Computing in High Energy Physics 1998 (CHEP 98). 1998.

http://www.lbl.gov/ arie/papers/proc-CHEP98.ps.

[20] R. Stevens, P. Woodward, T. DeFanti, and C. Catlett. From the I-WAY to the National Tech-

nology Grid. Communications of the ACM, 40(11):50{61, 1997.

[21] B. Tierney, W. Johnston, L. Chen, H. Herzog, G. Hoo, G. Jin, and J. Lee. Distributed parallel

data storage systems: A scalable approach to high speed image servers. In Proc. ACM Multimedia

94. ACM Press, 1994.

[22] B. Tierney, W. Johnston, B. Crowley, G. Hoo, C. Brooks, and D. Gunter. The NetLogger

methodology for high performance distributed systems performance analysis. In Proc. 7th IEEE

Symp. on High Performance Distributed Computing. IEEE Computer Society Press, 1998.

[23] M. Wahl, T. Howes, and S. Kille. Lightweight directory access protocol (v3). RFC 2251, Internet

Engineering Task Force, 1997.

[24] Richard W. Watson and Robert A. Coyne. The parallel I/O architecture of the High-Performance

Storage System (HPSS). In IEEE MSS Symposium, 1995.

[25] R. Wolski. Forecasting network performance to support dynamic scheduling using the network

weather service. In Proc. 6th IEEE Symp. on High Performance Distributed Computing, Portland,

Oregon, 1997. IEEE Press.

12

