
TERAGRID 2007 CONFERENCE, MADISON, WI 1

TeraGrid’s GRAM Auditing & Accounting, & its
Integration with the LEAD Science Gateway

Stuart Martin1,2, Peter Lane1,2, Ian Foster1,2,3, and Marcus Christie4

Abstract— Science Gateways have been proposed as a means of lowering the barrier to scientists and their applications using TeraGrid re-
sources. A Science Gateway provides an application- or domain-specific interface that a scientist can easily understand; under the covers, its
implementation uses Web Services interfaces (including those provided by the Globus Toolkit) to access computers, storage, and other TeraGrid
resources. A single gateway may have 1000s of users who may collectively generate many thousands of file transfers and job submissions. Thus,
efficiency and scalability are paramount. The GRAM service provides secure scalable efficient access to remote computing resources, but some
auditing enhancements are needed to allow gateway users to be multiplexed over a common/service credential. We describe how auditing infor-
mation is produced by Globus Toolkit services and integrated with local accounting systems for use by TeraGrid’s resource providers. We also
describe how the LEAD Gateway has integrated GRAM auditing capabilities to provide auditing and accounting information for workflows of jobs
submitted by users of the LEAD Portal.

Index Terms— gateways, security, auditing, accounting, Globus, Grid, Job Execution Service, GRAM

—————————— ——————————

1 INTRODUCTION

We define a Web Services interface and associated mecha-
nisms to provide access to audit and accounting informa-
tion associated with Grid services. The current focus for
TeraGrid is accounting of compute resources consumed by
users, so the Globus Toolkit’s GRAM job submission and
management service [4] was enhanced to produce an audit-
ing record for each job. However, we believe this approach
can apply to any grid service and associated accounting
database. For example, users are typically not charged for
data transfer and data storage services in production grids,
but this system provides the structure to make it possible.
Some parts of this system are TeraGrid specific, but it can
be (1) leveraged by any Grid Service Providers to provide
GRAM clients new options for secure access to service au-
dit information in scalable and efficient ways, and (2) inte-
grated with a Grid’s accounting system to provide Web
Service access via OGSA-DAI to usage information.

We use the LEAD gateway [8] to demonstrate a success-
ful integration with this new GRAM audit and accounting
interface for TeraGrid’s compute resources.

2 GRAM BACKGROUND
The Globus Toolkit provides both Web Services and “pre-
Web Services” interfaces for securely and reliably submit-
ting, monitoring, and controlling jobs on remote resources.
The implementations of both sets of interfaces are known as
“GRAM,” for Grid Resource Allocation and Management;
the term “WS GRAM” (or “GRAM4” [5]) refers only to the
Web Services implementation.

Jobs are computational tasks that may perform in-
put/output operations that affect the state of the computa-

tional resource and its associated file systems. In practice,
such jobs may require the coordinated staging of data into
the resource prior to job execution and out of the resource
following execution. Some users may want to access output
data as the job is running. Monitoring consists of querying
and/or subscribing for status information such as job state
changes. Control operations allow the user to terminate the
job via both soft-state lifetime management and explicit
terminations [6].

Grid computing resources are typically operated under
the control of a local resource manager (e.g. PBS, LSF, SGE,
Condor, etc) that implements allocation and prioritization
policies while optimizing the execution of all submitted
jobs for efficiency and performance. GRAM is not a local
resource manager, but rather a protocol engine for commu-
nicating with a range of different local resource managers
using a standard message format.

3 AUDITING AND ACCOUNTING USE CASES
We use three use cases to motivate the design of the facili-
ties described in this document.

UC1: Group Access. A grid resource provider allows a
remote service (e.g., a gateway or portal) to submit jobs on
behalf of multiple users. The grid resource provider only
obtains information about the identity of the remote sub-
mitting service and thus does not know the identity of the
users for which the grid jobs are submitted. This group ac-
cess is allowed under the condition that the remote service
store audit information so that, if and when needed, the
grid resource provider can request and obtain information
to track a specific job back to an individual user. This ap-
proach is consistent with TeraGrid’s plans for Gateway ac-
cess using a “community” account.

UC2: Query Job Accounting. A client that submits a job
needs to be able to obtain, after the job has completed, in-
formation about the resources consumed by that job. In

————————————————
1 Computation Institute, University of Chicago & Argonne National
Laboratory, USA

2 Math & Computer Science Division, Argonne National Laboratory,
Argonne IL, USA
3 Department of Computer Science, University of Chicago, IL, USA
4 Indiana University, USA

2 TERAGRID 2007 CONFERENCE, MADISON, WI

portal and gateway environments where many users sub-
mit many jobs against a single allocation, the per-job ac-
counting information is needed soon after the job completes
so that client-side accounting can be updated. Accounting
information is sensitive and thus should only be released to
authorized parties.

UC3: Auditing. In a distributed multi-site environment,
it can be necessary to investigate various forms of sus-
pected intrusion and abuse. In such cases, we may need to
access an audit trail of the actions performed by a service.
When accessing this audit trail, it will frequently be impor-
tant to be able to relate specific actions to the user requests
that caused them to be performed. Audit information is
sensitive and thus should only be released to authorized
parties.

4 REQUIREMENTS
We extract from the use cases the following requirements
for an audit and accounting system:

• Grid Job Identifier (GJID): We require an identifier
that a client can use to refer to a job when requesting
audit and accounting records (UC1, UC3), and that a
GRAM service can use to refer to a job when request-
ing submitter identity information from a client
(UC2). This identifier should be globally unique in
time and space.

• Client Interface: We require an interface that allows a
client to access audit and accounting records associ-
ated with the jobs executed by a GRAM service (UC1,
UC3). This interface should allow the client to retrieve
information about a particular job or set of jobs (sub-
ject to authorization).

• Creation of Audit and Accounting Information: We
require mechanisms for recording “audit records” for
important events that occur when a grid job is proc-
essed and “accounting records” for the resources con-
sumed by a job

• Access to Audit and Accounting Information. We
require mechanisms for retrieving this information
from other sources, such as accounting databases
maintained by local resource managers.

• Scalability: We need interfaces and implementations
capable of dealing with large numbers of audit re-
cords. We do not have firm data yet on the exact
numbers, but O(100,000) records seems likely.

• Authentication and Authorization: We require se-
cure authentication and authorization mechanisms to
ensure that only appropriately authenticated and au-
thorized clients can access audit and accounting in-
formation.

We do not list as an immediate requirement support for
remote monitoring and management of the auditing and
accounting service, although such capabilities may be re-
quired in the future.

5 INTERFACE DESIGN
We present a design based on the following concepts and
mechanisms:

• A GJID construction algorithm is used to generate
unique GJIDs from the endpoint references (EPRs)
constructed by GRAM4 for each job.

• An OGSA-DAI-based [3] audit and accounting interface
provide access to audit and accounting information
via standard Web Services mechanisms.

• Standard GT4 authentication and authorization mecha-
nisms can be used to control access to audit and ac-
counting information.

5.1 Grid Job Identifier (GJID)
We require a GJID that can be shared between client and
service and used to uniquely identify a grid job. Ideally,
this identifier will be something that is available in the
normal interaction (protocol) with the service, so that no
additional communication is required to obtain it.

In GRAM4, we can use the EPR returned by a job sub-
mission request for this purpose. An EPR is an XML docu-
ment that contains an address field plus zero or more refer-
ence properties. We convert this document into a GJID as
follows:

1) Obtain the address part of EPR as a string
2) Obtain the first reference property (assuming it is

the resource key)
3) Canonicalize the reference property element
4) Generate a digest of the element from 3
5) Base64-encode this digest
6) Construct a string as follows: address from 1 + ? + en-

coded digest from 5
For example, given the following example EPR returned

by a GRAM4 service to a client:

<ns1:managedJobEndpoint xmlns:ns1=
 "http://www.globus.org/namespaces/2004/10/gram/job">
 <ns2:Address xmlns:ns2=
 "http://schemas.xmlsoap.org/ws/2004/03/addressing">
https://127.0.0.1:8443/wsrf/services/ManagedExecutableJobService
 </ns2:Address>
 <ns3:ReferenceProperties xmlns:ns3=
 "http://schemas.xmlsoap.org/ws/2004/03/addressing">
 <ns1:ResourceID cca8169a-c65f-11da-a61c-000d61215ff0
 </ns1:ResourceID>
 </ns3:ReferenceProperties>
 <ns4:ReferenceParameters
 xmlns:ns4=
 "http://schemas.xmlsoap.org/ws/2004/03/addressing"/>
</ns1:managedJobEndpoint>

we obtain the following GJID:

https://127.0.0.1:8443/wsrf/services/ManagedExecutableJobService?
QQDzjbFVYImtVg8

5.2 Client Interface
We define a flexible query interface to the audit and ac-
counting information. To simplify remote client access, we
also define operations to invoke specific queries. For exam-
ple, motivated by UC2 (query job accounting), we define an
operation that takes as input a GJID and returns the
“charged” amount from the TeraGrid’s central accounting
database.

We could have implemented these interfaces within the
GRAM service instead of in a separate audit service. How-
ever, the interface would then presumably provide access

MARTIN ET AL.: TERAGRID’S GRAM AUDITING AND ACCOUNTING AND INTEGRATION WITH THE LEAD SCIENCE GATEWAY 3

only to audit and accounting records associated with that
specific GRAM service. The use of a separate audit service
means that a single service can (but need not) provide ac-
cess to records from multiple GRAM services.

Ultimately, we may also wish to associate a management
interface with the audit service, to enable remote manage-
ment of distributed components.

5.3 Authentication and Authorization
We want to apply standard GT4 authentication and au-
thorization to operations invoked via the auditing and ac-
counting interface. Thus:

• Any client issuing a request must present a valid
X.509 certificate.

• Policy enforcement can then be applied based on a
range of policies.

Initially, we implement a simple policy that allows access to
a record if and only if the Grid UID of the requestor
matches the Grid UID in the audit record for the GJID. This
policy is sufficient for UC1 and UC2, but not UC3.

To support this policy, the Grid UID (i.e., X509 subject
name) of the client that originally submitted the job must be
included in the audit record.

6 IMPLEMENTATION
The implementation of our audit and accounting interface
must ensure that required audit and accounting records are
generated and/or obtained from existing sources. For brev-
ity, we refer to any service that implements this interface as
an “audit service.” TeraGrid’s audit service for compute
resources consists of GRAM, OGSA-DAI and TeraGrid’s
central database (TGCDB). To understand their relation-
ship, we present an architectural diagram (Figure 1) with a
numbered sequence of events with descriptions.

Fig. 1: TG GRAM Auditing and Accounting Architecture

1) Gateway submits job and gets an EPR on the reply
2) Gateway controls and monitors job with EPR
3) GRAM submits and monitors job in RM

4) GRAM inserts audit record at end of job
5) RM writes job accounting record
6) AMIE uploads RM accounting records to TGCDB.

The RM accounting record is converted to TG ac-
counting units.

7) Gateway locally converts EPR to GJID
8) Gateway calls OGSA-DAI getChargeForJob with GJID

nd gets the job usage on the reply
9) OGSA-DAI processes remote join between GRAM

audit and TGCDB
Audit and accounting records may be generated and

stored by different entities in different contexts. In this case,
we assume that audit records are generated by the GRAM
service itself and accounting records by the local resource
manager (LRM) to which the GRAM service submit jobs.
Thus, we can expect that audit records are stored in a data-
base (of some sort) indexed by GJID, while accounting re-
cords are maintained by the LRM indexed by a local job
identifier (JID). For TeraGrid, the GRAM audit records are
maintained in a database co-located with each GRAM ser-
vice, while the LRM accounting records from all grid re-
source providers are maintained in TGCDB.

To connect these two sets of records, GRAM records a
job’s local JID in each audit record that it generates. It is
then straightforward for the audit service to respond to
requests such as those described in Section 5.2 above by
first selecting matching record(s) from the audit table and
then using the local JID(s) to retrieve relevant accounting
record(s) from the accounting table. In reality, this join to
TGCDB requires more than just the local JID, but those de-
tails are configurable in the audit service, in order to keep
the interface simple for the Gateways.

The UK eScience OGSA-DAI software (distributed as
part of the Globus Toolkit) can create a single virtual data-
base from two or more remote databases. We use OGSA-
DAI to create a virtual database from the GRAM audit da-
tabase and TGCDB, in order to implement a “getCharge-
ForJob” operation. We also use OGSA-DAI to provide a
Web Services SQL query interface to the audit and account-
ing databases.

Other per-job information such as job performance data
can be stored using the GJID or local JID as an index, and
then made available in the same virtual database.

Additional details about the TeraGrid’s audit-enabled
GRAM services implementation is available online [1].

6.1 GRAM Service Auditing Database Schema
The postgresql database schema for the GRAM service au-
diting table is as follows.

create table gram_audit_table (
 "job_grid_id" varchar(256) primary key,
 "local_job_id" varchar(512) not null,
 "submission_job_id" varchar(512) not null,
 "subject_name" varchar(256) not null,
 "username" varchar(16) not null,
 "creation_time" timestamp not null,
 "queued_time" timestamp not null,
 "stage_in_gid" varchar(256),
 "stage_out_grid_id" varchar(256),
 "clean_up_grid_id" varchar(256),
 "globus_toolkit_version" varchar(16) not null,

4 TERAGRID 2007 CONFERENCE, MADISON, WI

 "resource_manager_type" varchar(16) not null,
 "job_description" text not null,
 "success_flag" boolean not null
);

Both GRAM2 and GRAM4 have been modified to insert
records into a database table using this schema.

6.2 GRAM Service GJID creation
GRAM4 returns an EPR that is used to control the job. The
EPR is an XML document and thus cannot be used effec-
tively as a primary key for a database table. It needs to be
converted from an EPR to an acceptable GJID format. We
wrote a utility class EPRUtil.java to provide the method to
perform the conversion. This method will be included in
the upcoming GT 4.0.4 release. It is used by both the GRAM
service before storing the audit record and the GRAM client
(Gateway) before doing a getChargeForJob() invocation.

GRAM2 returns a “job contact” string that is used to
control the job. The job contact is by default an acceptable
GJID format, so we use it as the GJID directly. The GRAM2
client and service do not need to convert it in any way.

7 EXAMPLE OGSA-DAI QUERIES
Charge: A client can use the following Java code to retrieve
the charge for a GRAM job.

TeraGridGetChargeForJob chargeQuery =
 new TeraGridGetChargeForJob(gridJobId);
service.perform(chargeQuery);
double charge = chargeQuery.getCharge();
System.out.println("The charge for this job is: " + charge);

Audit: A client can retrieve desired fields from an audit
record by using the standard OGSA-DAI client interface to
execute a “perform document.” In the following, the lo-
cal_job_id and the queued_time are returned for the given
GJID for the given Grid UID.

<?xml version="1.0" encoding="UTF-8"?>
<perform xmlns=
 "http://ogsadai.org.uk/namespaces/2005/10/types">
 <documentation>
 This example performs a simple select statement to retrieve
 one row from the test database. The results are delivered
 within the response document.
 </documentation>--
 <sqlQueryStatement name="statement">
 <expression>
 select local_job_id,queued_time
 from gram_audit_table
 where job_grid_id='https://tg-
grid1.uc.teragrid.org:9554/wsrf/services/ManagedExecutableJobServ
ice?Tb1eLvO6mVl/Of9KGw9nSOmgGmU='
 AND subject_name=
'/DC=org/DC=doegrids/OU=People/CN=Peter G Lane 364243'
 </expression>
 <resultStream name="statementOutputRS"/>
 </sqlQueryStatement>
 <sqlResultsToXML name="statementRSToXML">
 <resultSet from="statementOutputRS"/>
 <webRowSet name="statementOutput"/>
 </sqlResultsToXML>
</perform>

Accounting: Using the standard OGSA-DAI client inter-
face, a remote query can be executed using a “perform
document” to retrieve desired fields from an accounting
record. Here, we focus on the <expression> element, since
the rest of the auditing perform document example can be
reused. The charge is returned for a specific TeraGrid job.
Note the additional resource_name and time constraints
that are required to ensure that a unique (and correct) job is
identified. These details are hidden from a client in the
getChargeForJob operation.

<expression>
 select charge from jobs
 where local_jobid='287254.tg-master.uc.teragrid.org' and
 resource_name='dtf.anl.teragrid' and '2006-06-22 15:44:10'
 between submit_time - INTERVAL '24 hours' and
 submit_time + INTERVAL '24 hours'
</expression>

8 GRAM AUDITING IN THE LEAD GATEWAY
The Linked Environments for Atmospheric Discovery
(LEAD) project [8] is a large, five-year Information Tech-
nology Research project funded by the National Science
Foundation in October 2003. The project has two primary
objectives. The first is “to lower the entry barrier for using,
and increase the sophistication of problems that can be ad-
dressed by, complex end-to-end weather analysis and fore-
casting/simulation tools.” The second objective involves
“improving our understanding of and ability to detect, ana-
lyze and predict mesoscale atmospheric phenomena by
interacting with weather in a dynamically adaptive man-
ner.”

The LEAD Gateway is fronted by the LEAD Portal, a
web container that principally addresses the first objective
by providing easy to use web based user interfaces (imple-
mented as JSR-168 Java portlets) to powerful forecasting
and analysis tools. The LEAD Portal provides interfaces to
the user for creating, configuring, launching and monitor-
ing workflows of application web services that run on the
LEAD testbed. These workflows are defined using the WS-
BPEL specification and are executed by the GPEL (Grid
Process Execution Language) workflow engine. GPEL in-
vokes application Web Services—Web Services wrappers
for meteorological application codes. These application
Web Services (implemented using the Generic Service Tool-
kit [12]) are the processes that run the application codes on
TeraGrid, using GRAM to execute the codes and GridFTP
[2] to manage input and output data files (these services
have access to the LEAD community account’s grid proxy
credential). The application web services communicate with
the workflow and other services via a publish/subscribe
notification system.

To integrate the GRAM auditing capability with the
LEAD Gateway, we introduce a new Audit service in the
LEAD architecture. This service collects auditing and ac-
counting records related to jobs run on behalf of users and
aggregates this information, by users and by workflows.

When a user submits a workflow to execute in the LEAD
Portal, a call is made to the LEAD Audit service with the ID
of the user who submitted the workflow, the ID of the

MARTIN ET AL.: TERAGRID’S GRAM AUDITING AND ACCOUNTING AND INTEGRATION WITH THE LEAD SCIENCE GATEWAY 5

workflow, the subscription topic on which notifications
about this workflow will be published, etc. The LEAD Au-
dit service stores this information in a database and then it
subscribes to notifications related to this workflow.

When application services are invoked by the workflow
engine, they invoke the application via a GRAM job sub-
mission and then send a notification containing, amongst
other things, the grid job id of that job. The LEAD Audit
service receives these notifications and stores their informa-
tion in its database.

In summary, the LEAD Audit service is plugged into the
LEAD architecture by listening for events on the notifica-
tion bus. Neither the workflow engine nor the application
services are aware of the LEAD Audit service and thus
there is no dependency between them. Finally, at periodic
intervals, the LEAD Audit service scans the jobs in its data-
base and contacts the GRAM auditing and accounting
OGSA-DAI services to update each job’s local job id and the
amount of the allocation used. Using database queries it is
able to provide the total amount of allocation used per user
and per workflow.

We also introduce an Audit portlet into the LEAD Portal.
This portlet provides a simple interface to the information
stored in the LEAD Audit service database. A user can see
how much of the community allocation they have con-
sumed, as well as a break down of allocation used per
workflow. The user can further drill down to see how much
allocation was used by each job within a workflow.

Fig. 2: LEAD Audit portlet shows aggregate and per workflow usage

ACKNOWLEDGMENTS
Many people providd input to the design and implementa-
tion of the GRAM auditing capabilities. In particular, we
thank Ally Hume, Rachana Ananthakrishnan, John Paul
Navarro, Ravi Madduri, and Martin Feller. This work was
supported in part by the National Science Foundation un-
der contract OCI-0534113 and by the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Dept.
of Energy, under Contract DE-AC02-06CH11357.

REFERENCES
1. TeraGrid GRAM Audit Service,

www.teragridforum.org/mediawiki/index.php?title=GRAM4_Au
dit, 2007.

2. Allcock, B., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu,
C., Raicu, I. and Foster, I., The Globus Striped GridFTP Frame-
work and Server. in SC'2005, (2005).

3. Antonioletti, M., Atkinson, M., Baxter, R., Borley, A., Chue
Hong, N., Dantressangle, P., Hume, A., Jackson, M., Krause, A.,
Laws, S., Parsons, P., Paton, N., Schopf, J., Sugden, T., Watson,
P. and Vyvyan, D., OGSA-DAI Status and Benchmarks. in UK e-
Science All Hands Meeting, (Nottingham, England, 2005).

4. Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin,
S., Smith, W. and Tuecke, S., A Resource Management Architec-
ture for Metacomputing Systems. in 4th Workshop on Job Sched-
uling Strategies for Parallel Processing, (1998), Springer-Verlag,
62-82.

5. Feller, M., Foster, I. and Martin, S. GT4 GRAM: A Functionality
and Performance Study. Globus Alliance, 2007.

6. Foster, I., Czajkowski, K., Ferguson, D., Frey, J., Graham, S.,
Maguire, T., Snelling, D. and Tuecke, S. Modeling and Managing
State in Distributed Systems: The Role of OGSI and WSRF. Pro-
ceedings of the IEEE, 93 (3). 604-612. 2005.

7. Kandaswamy, G., Fang, L., Huang, Y., Shirasuna, S., Marru, S.
and Gannon, D. Building Web Services for Scientific Grid Appli-
cations. IBM Journal of Research and Development, 50 (2/3).
249-260. 2006.

8. Plale, B., Gannon, D., Brotzge, J., Droegemeier, K., Kurose, J.,
McLaughlin, D., Wilhelmson, R., Graves, S., Ramamurthy, M.,
Clark, R.D., Yalda, S., Reed, D.A., Joseph, E. and Chandrasekar,
V. CASA and LEAD: Adaptive Cyberinfrastructure for Real-
Time Multiscale Weather Forecasting. IEEE Computer (Nov).
56-64. 2006.

9. Droegemeier, K.K. and Co-Authors, 2007: A new paradigm for
mesoscale meteorology: Grid and web services-oriented research
and education in LEAD. Preprints, 23rd Int. Conf. on Interactive
Information Processing Systems for Meteorology, 14-18 January,
San Antonio, TX, Amer. Meteor. Soc.

10. Marcus Christie and Suresh Marru, “The LEAD Portal: a Tera-
Grid gateway and application service architecture”, Concurrency
and Computation: Practice and Experience, John Wiley & Sons,
2007, To Appear.

11. Aleksander Slominski, “On using BPEL extensibility to imple-
ment OGSI and WSRF grid workflows”, Concurrency and Com-
putation: Practice and Experience, John Wiley & Sons, Volume
18, Issue 10, pp. 1229-1241, 2006.

12. Generic Service Toolkit, online,
http://www.extreme.indiana.edu/gfac/, Feb 14, 2007.

