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Abstract

The Cactus parallel simulation framework provides a modular and extensible set of
components for solving relativity problems on parallel computers. In recent work, we
have investigated techniques that would enable the execution of Cactus applications
in wide area \computational grid" environments. In a �rst study, we investigated the
feasibility of distributing a single simulation across multiple supercomputers, while in a
second we studied techniques for reducing communication costs associated with remote
visualization and steering. Distributed simulation was achieved by using MPICH-G,
an implementation of the Message Passing Interface standard that uses mechanisms
provided by the Globus grid toolkit to enable wide area execution. Experiments were
performed across SGI Origins and Cray T3Es with geographical separations ranging
from hundreds to thousands of kilometers. Total execution time when distributed
increased by between 48% and 133%, depending on con�guration. We view these
results as encouraging as they were obtained with essentially no specialized algorithmic
structures in the Cactus application. Work on remote visualization focused on the
development of a Cactus module that computes isosurfaces inline with numerical
relativity calculations. Experiments demonstrated that this technique can reduce
network bandwidth requirements by a factor ranging from 2.5 to 114, depending on
the nature of the problem.

1 Introduction

Many scienti�c research communities involve collaborations that span the globe and desire
to share their widely distributed resources. Recent advances in networking technology
have supported such e�orts by enabling the construction of scienti�c applications that use
geographically distributed resources. The numerical simulations community is responding
by developing tools that allow better access to widely distributed supercomputing,
networking, and storage resources. We discuss our experiences running simulations based on
the Cactus portable parallel simulation framework for solving problems in general relativity
on geographically distributed resources.

We examine two di�erent issues for running the Cactus code in a distributed environ-
ment. The �rst problem is running a Cactus simulation on multiple parallel computer
systems. We are examining this problem because we hope to perform larger simulations
than are currently possible on a single parallel computer. We distribute Cactus simulations
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across multiple supercomputers using the mechanisms provided by the Globus toolkit. In
particular, we use Globus mechanisms for authentication, access to remote computer sys-
tems, �le transfer, and communication. The Cactus code uses MPI for communication and
makes use of MPICH-G [9], an MPI implementation layered atop Globus communication
mechanisms. These communication mechanisms allow a MPI application to be executed
on distributed resources.

We �nd that without performing any code optimizations, our simulations ran 48% to
100% slower when using an Origin at the National Center for Supercomputing Applications
(NCSA) and an Onyx2 at Argonne National Laboratory (ANL). We also ran simulations
between Cray T3Es in Germany and a T3E at the San Diego Supercomputing Center
(SDSC). Running between the T3Es in Germany resulted in an increase in execution
time of 79% to 133%, and running between a German T3E and a T3E at the San Diego
Supercomputing Center resulted in an execution time increase of 114% to 186%. We �nd
these results encouraging as they indicate that even in extreme wide area con�gurations and
in the absence of optimizations, communication costs are only around 50 percent of total
runtime. We expect optimizations such as message combining, optimized protocols, and
computation/communication overlap to reduce communication costs substantially. Hence,
it appears likely that distributed execution of Cactus applications will prove to be practical.

The second issue we examine here is remote visualization and steering of the Cactus
code. It is common when performing remote visualization to transfer 3-D datasets from a
simulation code to a separate visualization code that (for example) constructs isosurfaces.
While simple and modular, this approach can result in excessive communication. The
modular structure of the Cactus framework makes it relatively easy to construct an
isosurface module that performs isosurfacing operations on the same processors as the
simulation. Experiments with realistic astrophysics applications demonstrate that this
technique can reduces bandwidth requirements associated with visualization by a factor
that ranges from 2.5 to 114, depending on the complexity of the data being visualized. This
performance improvement and the availability of high-performance wide area networks has
allowed scientists in the United States to perform real-time visualization and steering of
large Cactus calculations running in Germany.

The next section describes the Cactus framework. Section 3 describes the Globus
toolkit, Section 4 describes our experiences and results, and Section 5 contains our
conclusions.

2 Cactus

Cactus [1] is a modular framework for creating portable parallel �nite-di�erence simulation
codes. The Cactus code's primary application has been solving Einstein's equations of
gravity [4], including studies involving black holes [5], self-gravitating �elds [16], and
relativistic hydrodynamics such as the coalescence of two neutron stars (NASA Neutron
Star Grand Challenge Project) [2]. The Cactus code was originally developed at the Max-
Planck-Institut for Gravitational Physics (Albert-Einstein-Institut) in Potsdam, Germany,
by Paul Walker and Joan Mass�o. Since then, development of Cactus has been taken over
by a community of Cactus users, particularly at Washington University in St. Louis in
collaboration with the Computational Relativity Group at AEI-Potsdam. The most recent
versions of Cactus are completely generalized so it can be reused to support wider range of
simulation problems.

Cactus has been designed from the start to support the development e�orts of many



3

programmers working on independent projects by making heavy use of the CVS code
revision system and a very modular system for adding simulation capabilities. The modules
that plug into Cactus are commonly referred to as \thorns." Parallelism and portability
are achieved by hiding MPI, the I/O subsystem, and the calling interface under a simple
abstraction API. Cactus allows modules to be written completely natively in either C
or f77/f90. This makes it considerably easier for physicists to turn existing codes (the
majority of which are implemented in Fortran) into modules (thorns) that plug into the
Cactus framework. All of the bene�ts of a modern simulation code are available without
requiring major technique changes for the programmers.

The Cactus user community spans the globe, with users in the United States, Germany,
Spain, and Hong Kong. Similarly, the computational resources that the Cactus users would
like access to are also widely distributed. Managing remote data poses one of the most
di�cult challenges to using distant resources. It can take longer to transfer the data that
results from a simulation than to actually run the simulation code. For the largest problems,
the computational resources needed to visualize the resulting data may be nearly as large as
supercomputer that was originally used to create the data. In order to meet these challenges,
researchers at NCSA and the Rechenzentrum der MPG at Garching Germany [3] created a
remote visualization thorn that does the visualization computations in-line with the code
and can be steered by using a remote client application. This allows the visualization
computations to run with the same degree of parallelism as the simulation codes, resulting
in exceptionally fast performance. The geometric information is sent via a network socket to
a visualization client application, which runs on a display device such as an ImmersaDesk.
The geometry data generally requires considerably less network bandwidth than does the
raw data. The user can control various visualization parameters such as the isosurface level
from the visualization client. In addition, selected simulation parameters can be controlled
by the client so that the simulation can be steered as it proceeds.

3 Globus

The supercomputing resources available to Cactus users have di�erent resource reservation
procedures, data storage systems, security requirements, and programming environments.
The Globus system provides a single set of tools to bring control of these worldwide
distributed resources to each user's desktop. Globus consists of a core set of low-level
services upon which higher-level services are constructed. The low-level services used in
this work are services for authentication, information distribution, resource management,
and access to remote data.

The Globus Security Infrastructure (GSI) provides authentication based on public key
cryptography. Once a user has been authenticated to Globus, he is then automatically
authenticated to all local administrative domains that have installed Globus and that the
user has access to. This is accomplished by mapping Globus credentials to local credentials
through a security gateway.

The Metacomputing Directory Service [7] (MDS) provides a logically centralized place
to store information about entities. The MDS is accessed using the Lightweight Directory
Access Protocol [12] (LDAP) and stores information in a hierarchical directory information
tree. The directory service contains information about computer systems, networks, users,
and so forth. Further, the MDS contains dynamic information such as the number of free
nodes on computer systems and the latency and bandwidth between systems. This allows
real-time decisions to be made about what resources to use.
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The Globus Resource Allocation Manager [6] (GRAM) provides resource management
functions to start, monitor, and terminate serial and parallel applications. The purpose of
the GRAM is not to replace local scheduling systems but to provide a common interface
to the variety of local scheduling systems already in use. GRAMs have been layered atop
EASY [13], LSF [15], Condor [14], and other local scheduling systems. In addition, a
GRAM that simply does a fork() and exec() is available for unscheduled local resources.

Globus provides access to remote data using the Global Access to Secondary Storage
(GASS) component. This component allows applications to access �les from various types
of servers (currently GASS, ftp, or http) from remote systems. The remote �les are accessed
by using GASS versions of the standard C I/O functions. Files from these servers are moved
to local caches and accessed locally. If remote �les are written to, they are moved back
to their remote server after they have been closed. The GASS library has been integrated
with the GRAMs so that the executable given to the GRAMs can be located remotely.
The GRAM will use GASS to transfer the remote executable to the local system and then
execute it. This functionality along with the GASS �le I/O commands enables location-
independent applications.

One high-level Globus service used by Cactus is an implementation of the MPI [11]
message-passing standard called MPICH. MPICH is a portable implementation of MPI
developed at Argonne National Laboratory and Missouri State University. MPICH is
implemented over an abstract communication device, which in turn can be implemented
using many di�erent communication mechanisms such as shared memory or a proprietary
message-passing protocol. A Globus implementation [9] of this abstract communication
device that uses the Nexus [10] communication library, and Globus mechanisms for resource
allocation is available.

The Nexus library is a low-level Globus component that is a communication library that
provides asynchronous remote procedure calls and threading mechanisms. Nexus supports
multimethod communication mechanisms where a process can use multiple communication
mechanisms to communicate with other processes. Nexus will automatically select the
optimal communication mechanism to use. For example, Nexus will use shared memory
to communicate with processes on the same SMP and will use TCP to communicate with
processes on a di�erent computer system.

4 Experiences and Results

We use Cactus and Globus day-to-day and also in demonstrations such as 1998 meeting of
the National Computational Science Alliance (Alliance98) and the SC'98 conference. We
have several goals with this work. First, we want to run very large Cactus simulations on
distributed computer systems. These are simulations that we cannot perform on a single
supercomputer. Second, we want to be able to interactively visualize and steer Cactus
simulations while they execute.

4.1 Single-System Performance

The �rst issue we examine is the overhead of using MPICH with the Globus device (MPICH-
G) instead of native MPI. Figure 1 compares the execution times of a single iteration
of a 128x128x128 Cactus simulation on the ANL Onyx2 when Cactus is compiled with
native MPI or MPICH-G. The execution times are nearly the same. Figure 2 shows
the execution time of the same problem on a T3E at the Konrad-Zuse-Zentrum f�ur
Informationstechnik Berlin (ZIB). We see that Cactus performance decreases when MPICH-
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Fig. 1. Execution time of a single iteration of a 128x128x128 Cactus simulation on the ANL

Onyx2 when compiled with native MPI and MPICH-G.

G is used instead of native MPI on the T3E. This decrease occurs because MPICH-G
performance is proportionally worse than native MPI on the T3E than the Onyx2, as we
will see next.

Figure 3 shows the performance of the native MPI and MPICH-G implementations on
the ANL Onyx2. The data shows that the MPICH-G implementation has lower bandwidth
than the native MPI implementation. The native MPI has a bandwidth that ranges from
4.3 Mbits/sec for small messages to 1.6 Gbits/sec for large messages while the MPICH-G
implementation has a bandwidth of 1.7 MBits/sec for small messages to 673.7 Mbits/sec
for large messages. In addition, the native MPI implementation has a latency of 14.5
microseconds while the MPICH-G implementation has a latency of 37.5 microseconds.
Figure 3 also shows the same bandwidths on the ZIB T3E. The native MPI implementation
has a bandwidth that ranges from 3.9 Mbits/sec for small messages to 1.3 Gbits/sec for
large messages while the MPICH-G implementation has a bandwidth of 280 Kbits/sec for
small messages to 539 Mbits/sec for large messages. The latency for native MPI on that
T3E is 16.5 microseconds, and the latency is 225 microseconds when using MPICH-G.

The performance of the Cactus code does not su�er when using MPICH-G on the
ANL Onyx2 because the Cactus code overlaps computation and communication and can
hide the lower communication performance of MPICH-G. The di�erence in performance
between native MPI and MPICH-G on the ZIB T3E, however, is too large to be hidden by
the Cactus computations. The lower bandwidth of the MPICH-G implementation is due
to an extra copy on the sending and receiving sides. These copies are being removed, and
we expect the MPICH-G bandwidth to be close to the native MPI bandwidth.

4.2 Distributed Performance

We next examine the performance of the Cactus code when executed on multiple parallel
computers. We use several pairs of computers in these experiments to investigate the
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Fig. 2. Execution time of a single iteration of a 64x64x128 Cactus simulation on the ZIB T3E

when compiled with native MPI and MPICH-G.
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Fig. 4. Execution time of a single iteration of a 128�128�128 Cactus simulation.

e�ect of network performance. Figure 4 shows the execution time of an iteration of a
128�128�128 Cactus simulation when the simulation is run on only the ANL Onyx2 or an
equal number of nodes on both the ANL Onyx2 and a NCSA Origin. The data shows that
using two machines instead of one increases the execution time of each iteration by 48%
to 100%. This decrease in performance is not acceptable in most circumstances, although
we can imagine that the larger amount of memory available will allow us to run larger
simulations than we can run on a single system.

Figure 5 shows the bandwidth obtained when running an MPI ping-pong test between
the ANL Onyx2 and a NCSA Origin. Our MPI measurements show that the latency is
3.75 milliseconds and the bandwidth varies from 17 Kbits/sec for small messages to 24.2
Mbits/sec for large messages. This latency is 250 times worse than the latency between
processes on the Onyx2, and the bandwidth is a factor of 30 worse.

Figure 6 shows the average execution time of an iteration of a 64x64x128 Cactus
simulation when executed on one or two Cray T3Es. Using the ZIB T3E and the T3E at
Rechenzentrum Garching (RZG) increases execution time from 79% to 133%. This increase
is larger than the increase seen when using two SGI systems. This larger increase can be
attributed to the network between the two T3Es being slower than the network between
the two SGI systems. Also note that the execution time for the simulation between ZIB
and RZG increased when 64 nodes were used. We believe this was due to competition for
the network connection between the two machines. Figure 5 shows that the MPICH-G
bandwidth between a T3E at ZIB and a T3E at RZG is 1.5 Kbits/sec for small messages
and 4.2 Mbits/sec for large messages. The latency is 42.5 milliseconds. This latency is 10
times higher than the latency between the SGI systems and the bandwidth is 6 times lower.

We also ran simulations between the ZIB T3E and the SDSC T3E over a temporary
higher-speed trans-Atlantic connection into STAR-TAP. Simulating on these two systems
resulted in an execution time increase of 114% to 186% over using the ZIB T3E. We
observed that the network performance between these systems was worse than the network
performance between the two German T3Es. Unfortunately, we did not make systematic
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Fig. 6. Execution time of a single iteration of a 64�64�128 Cactus simulation.

MPICH-G bandwidth measurements during this time.
The performance results for the Cactus simulations above were obtained without

performing any optimizations for a distributed environment. One possible optimization
is to combine messages. We instrumented the Cactus code to examine the messages being
sent between the processes. We found that most of the messages being sent are small
(9300 bytes during a 128�128�128 simulation on 128 nodes). The data in Figure 5 shows
that larger messages should be used to achieve higher bandwidth: the large latencies are
dominating communication time for smaller messages. We can accomplish this task in two
ways. First, we can send the arrays for all of the variables as one message instead of one
message per array. Second, if this does not provide su�ciently large messages, we can
combine messages from processes on the same machine that are going to the same process
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Table 1

Simulation performance of a 128�128�128 computational domain on a 128-processor Origin2000

Number of Average Simulation Average Isosurfacing Percentage of Time
Processors Time per Step (sec) Time per Step (sec) Isosurfacing

1 129.00 71.3 35.6

2 66.70 24.1 26.6

4 30.20 10.6 26.3

8 15.60 5.28 25.3

16 7.10 2.63 27.0

32 3.57 1.37 27.7

64 2.03 0.77 27.5

on a di�erent machine.

4.3 Remote Visualization and Steering

The last issue we address is performing isosurfacing calculations inline with the parallel
simulations. This technique allows the parallel computers to quickly calculate isosurfaces
and then send only the geometry data to the visualization device, reducing network tra�c.
Using this technique, we have found that the current generation of wide-area networks
provide su�cient performance for real-time visualization and steering of the Cactus code,
even when the MPP and visualization device are separated by the Atlantic ocean.

Our experiments show that computing isosurfaces on the parallel computer for a
128�128�128 problem and then sending them to the visualization device results in 0.14 to
6.4 Mbytes of data being transferred, depending on the complexity of the isosurface. If we
send the data at all of the grid points, 16 Mbytes would be transferred. This is a reduction
in data transmission by 2.5 to 114.

Table 1 shows a series of benchmark runs on a NCSA Origin. Each of the benchmark
runs of the simulation code used 128�128�128 grid where each grid point contains 56
double-precision values, one double value for each of 56 properties being monitored. The
data shows that the isosurfacer is as parallel as the simulation code (the percentage of time
spent isosurfacing stays relatively constant).

Another approach is to perform the isosurfacing on a separate parallel computer.
Members of our team used that approach for a distributed computing demo at SC95 on the
I-WAY [8]. The problem with this approach is that the cost of moving the data from the
simulation host can far exceed the bene�ts of parallelizing the visualization computations.
We can consider the case of a 128�128�128 simulation in Table 1 over a connection with
15 Mbytes/sec (the availible bandwidth we had at Alliance98). It would have taken 80
seconds to send each step of the simulation as raw data. Sending the geometry would take
1.4 to 30 seconds, and more than makes up for the cost of computing the isosurfaces in-line
with the simulation.

5 Conclusion

We have found that the hardware and software infrastructure exists to simulate general rel-
ativity problems in a distributed computational environment, at some cost in performance.
We examine two di�erent issues for running the Cactus code in such a distributed environ-
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ment. The �rst issue is running a Cactus simulation on multiple parallel computer systems.
Our objective is to perform larger simulations than are currently possible on a single paral-
lel computer. We distribute Cactus simulations across multiple supercomputers using the
mechanisms provided by the Globus toolkit. In particular, we use Globus mechanisms for
authentication, access to remote computer systems, �le transfer, and communication. The
Cactus code uses MPI for communication and makes use of an MPI implementation layered
atop Globus communication mechanisms. These communication mechanisms allow a MPI
application to be executed on distributed resources.

We �nd that without performing any code optimizations, our simulations ran 48% to
100% slower when using an Origin at the National Center for Supercomputing Applications
(NCSA) and an Onyx2 at Argonne National Laboratory (ANL). We also ran simulations
between Cray T3Es in Germany and a T3E at the San Diego Supercomputing Center
(SDSC). Running between the T3Es in Germany resulted in an increase in execution time
of 79% to 133%, and running between a German T3E and a T3E at the San Diego
Supercomputing Center resulted in an execution time increase of 114% to 186%. We
are very encouraged that we are able to run simulations on parallel computers that are
geographically distributed, and we have identi�ed several areas to investigate to improve
the performance of Cactus simulations in this environment.

The second issue we examine here is remote visualization and steering of the Cactus
code. Cactus is a modular framework and we have implemented a module for this task.
This module performs isosurfacing operations on the same parallel computers that are
running the simulation and reduces bandwidth requirements between the simulation and
visualization components by a factor of 2.5 to 114, depending on the complexity of the
data being visualized. This performance improvement and the available high-performance
wide area networks allow us to distribute the simulation and visualization components in
di�erent parts of the United States and Europe and interactively visualize and steer cactus
simulations.

In future work we will address the performance problems when running the simulation
code on distributed resources. We are improving the performance of the Globus MPICH
device to increase the bandwidth that can be used to transfer data between processes.
We are also looking at techniques to improve the performance of Cactus in a distributed
environment. One example is combining the many small messages that the Cactus code
currently sends into fewer, larger messages between the computer systems. This will help
overcome the large latencies that exist between geographically distributed computers.
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