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Abstract—GridFTP is the de facto standard for bulk data
movement in distributed science environments. It extends the
legacy FTP to provide strong security, reliability, and high
performance. GridFTP, like FTP, is a two-channel protocol—the
control channel is used for sending commands and responses, and
the data channel is used for transferring the actual data. The
control channel is encrypted and integrity protected by default.
The data channel is authenticated by default. Encryption and
integrity protection are both supported on the data channel but
are not enabled by default because of their high CPU cost and
low data transfer rates. In this paper, we present an extensive
experimental study on the performance implications of enabling
integrity protection and encryption on the data channel. We show
that in a vast number of cases involving the use of nonthreaded
Globus GridFTP servers on multicore systems, throughputs of
secure transfers are not comparable to those of nonencrypted
and nonintegrity-protected transfers because of an inefficient

use of available processors. However, in cases where a strong
desire for higher security levels permits larger expenditures
in processing, integrity protection and sometimes even crypto-
graphic confidentiality can be provided without having to suffer
a decline in throughput. We show that this can be accomplished
through threaded Globus GridFTP server instances configured
with appropriately chosen parallelism and concurrency, allowing
for a more effective use of available system resources.

I. INTRODUCTION

When large amounts of data are being reproduced, whether

across local area networks (LANs) or wide area networks

(WANs), the layers of security used in the transfers are consid-

erable priorities, especially with higher levels of confidentiality

of the content. However, the process of conducting integrity

checks on or the encryption of data comes with a nontrivial

overhead that is imposed on the processing resources of the

end systems involved in managing secure data connections. In

practice, it is difficult for data transfer tools, even if equipped

with state-of-the-art optimization mechanisms, to do encrypted

or integrity-protected data transfers without compromising the

speed.

One such tool is Globus GridFTP, which implements the

GridFTP [1] protocol encapsulated within a robust set of

libraries and yields a modular, scalable, high-performance tool

for data management [2]. These attributes of Globus GridFTP

and the widespread use of the Globus Toolkit [3] [4] [5]

motivated our using Globus GridFTP server instances and

globus-url-copy (the command-line GridFTP client) in the

experiments described in this paper.

Ample literature exists about the benefits that can be ob-

tained from using parallel TCP streams, as well as extended

theoretical analysis of the correct number of parallel sockets

recommended for achieviing optimal aggregate throughput

[2] [6] [7]. Although the Globus GridFTP server can, in

practice, achieve high-speed integrity-protected and encrypted

data transfers [8], these speeds still do not usually fare well

when compared with the simply authenticated transfers [4].

In general, it is not uncommon for integrity-protected and

encrypted transfers to differ from less secure transfers by

an order of magnitude in throughput, especially on high-

speed links [4]. This performance drawback makes it tempting

to rely on TCP checksums for protecting sensitive data, as

an alternative to integrity protection. However, mere TCP

checksums are not a suitable substitute for integrity-protection

at GridFTP (or any application) level, as emphasized by Stone

and Partridge [9], who analyze the causes of the highly random

failures of TCP checksums.

In this paper, we characterize the performance of Globus

GridFTP for four levels of security on the data channel—

no security, authentication only, integrity protection, and

encryption—as hardware platforms and optimization options

(concurrency, parallelism) are varied. We present an extensive

experimental study on systems with varying numbers of CPU

cores, and we show that even fully encrypted Globus GridFTP

transfers can be done without suffering a decline in throughput,

through a more effective usage of available system resources,

such as the number of cores present and the application of

threaded Globus GridFTP server instances.

The use of multithreading to drive encrypted transfers at

high speeds comes at a cost, however: the number of cores

required grows with the link speed that is to be sustained. For

example, extrapolation shows that approximately 100 cores per

host would be required for a 10 Gbps integrity-protected data

link between two pairs of endpoints.

We offer recommendations about the system configurations

as well as the Globus GridFTP server configurations in order

to achieve fully encrypted and integrity protected data transfer

rates similar to those of authentication-only data transfer rates.

The rest of the paper is organized as follows. Section II

provides background on GridFTP. Section III covers in detail

the experiments conducted and their outcomes. In Section IV,

we summarize our findings.



II. GRIDFTP BACKGROUND

The GridFTP protocol [10] extends the File Transfer Pro-

tocol (FTP) with features that permit high performance and

secure and reliable data movement. It is based on the RFC

959 [11], RFC 2228 [12], and RFC 2389 [13]. Additionally,

it defines a new data channel protocol called extended block

mode [10]. The GridFTP protocol has been standardized

through the Open Grid Forum. The standardization has led

to the development of multiple interoperable implementations.

The Globus implementation of GridFTP [1] is the most widely

used.

The following is a summary of the key features of GridFTP.

• GridFTP allows third-party control of data transfer

whereby a user can initiate, monitor, and control data

transfers between two remote machines that are the

source and destination for the data transfer.

• GridFTP supports Generic Security Services application

program interface (GSS-API) authentication of the con-

trol channel [12] and data channel (GridFTP extensions)

[10]. It also supports user-controlled levels of data in-

tegrity and/or confidentiality.

• On wide-area links, using multiple TCP streams in paral-

lel between a single source and destination can improve

the aggregate bandwidth relative to that achieved by a

single stream [7], [6]. GridFTP supports such parallelism

through FTP command extensions and data channel ex-

tensions.

• GridFTP supports striped data movement operations, in

which a set of computers is used in a coordinated fashion

to move data from one parallel file system to another.

Striping and parallelism may be used in tandem.

• Some applications can benefit from transferring portions

of files rather than complete files: for example, analyses

that require access to subsets of massive files. FTP

allows transfer of the remainder of a file starting at a

specified offset. GridFTP supports requests for arbitrary

file regions.

• Fault recovery methods are needed to handle failures such

as transient network and server outages. The FTP stan-

dard includes basic features for restarting failed transfers

that are not widely implemented. GridFTP exploits these

features and extends them to cover its new data channel

protocol.

III. EXPERIMENTS

We have conducted various experiments aimed at discov-

ering the performance-hindering factors of secure Globus

GridFTP transfers and determining methods for avoidance

of severe degradation in throughput for such transfers. For

these experiments, third-party transfers were used. Tests were

performed on five pairs of endpoints—three pairs on LAN and

two pairs on WAN links. For LAN tests, we used a pair of

dedicated data transfer nodes (DTNs) at the National Energy

Research Scientific Computing Center (NERSC), each having

four cores at 3.0 GHz; a pair of dedicated data transfer nodes

at the Argonne Leadership Computing Facility (ALCF), each

with four cores at 2.6 GHz; and a pair of compute nodes at the

San Diego Supercomputing Center (SDSC) cluster Trestles,

each with 16 cores at 2.4 GHz. For WAN tests, we used one of

the DTNs at NERSC and one of the DTNs at ALCF, with four

cores per host; a node on Ranger cluster at the Texas Advanced

Computing Center (TACC), with 16 2.3 GHz physical cores;

and a node on the Pittsburgh Supercomputing Center (PSC)

high-speed data conduit, with 8 physical, 16 logical 2.4 GHz

cores.

In the figures that follow, test datasets are described in the

formatN×SGB, where N is the number of files in the dataset

and S is the size of each file in the dataset. Experiments were

run on three datasets: 32× 4 GB, 1× 64 GB, and 1× 32 GB.

In our experiments, we varied two optimization parameters

in Globus GridFTP: parallelism and concurrency. Parallelism

splits a file into multiple chunks and sends those chunks

simultaneously across multiple TCP streams. Concurrency

[14] enables the transmission of multiple files simultaneously.

For the 32X4 GB dataset, concurrency values of {1, 2, 4, 8, 16}
were tested. Parallel values were {1, 2, 4, 8, 16, 32}.
The NERSC, ALCF, and Trestles LAN experiments elim-

inated the effects of as many unknown and unpredictable

network variations in the final results as possible. Data ob-

tained from these transfers aided the interpretation of the

more common, yet more complex and noisy disk-to-disk WAN

transfers. The variety of datasets arose from an interest in

tracking the effects of concurrent transfers (such as scenarios

where the total data size is kept the same but gets divided into

varying numbers of equivalent chunks across an experiment)

on overall performance and an opportunity to compare these

results with the behaviors of threads on identical datasets.

In the context of this paper, data-channel authenticated

(dcau) and no security on data channel (nodcau) transfers

will be referred to as less secure or nonsecure transfers (or

authenticated and unauthenticated transfers, respectively); pro-

tected transfers will reference -dcsafe transfers, which entail

authentication and integrity-protection; and encrypted transfers

will reference -dcpriv transfers, which are authenticated and

cryptographically encrypted data connections.

A. Eliminating Disk I/O Interference

To allow the effects of integrity-protected and encrypted

transfers on end-system CPU load to be more apparent, and

to induce throughput and disk I/O independence, we conducted

“memory-to-memory” in addition to disk-to-disk experiments.

Since few systems have enough RAM available to perform

large memory-to-memory data transfers, we simulated such

transfers using /dev/zero as source files and /dev/null as

destination files (accomplished with the help of globus-url-

copy -length option, a parameter specifying the amount of

data to be transferred).

However, an understandable concern arises when this

method is used with dcsafe and dcpriv transfers: less CPU

activity may be required to integrity-protect and encrypt a

completely uniform dataset (such as one comprising solely



null values) than a random dataset. To dispel this suspicion,

we obtained a 32 GB (which is a sufficient amount of

memory, when used with relatively smaller files, to mimic

RAM) tmpfs disk and compared its performance with that of

/dev/zero-/dev/null transfers. For all four security parameters,

the transfer times were nearly identical, thus leading us to

conclude that /dev/zero-/dev/null transfers are a permissible

model for memory data transfers. Hence, for simplicity, we

hereafter refer to /dev/zero-/dev/null transfers as memory-to-

memory transfers.

B. Testing on Production Environments

Our early experiments occupied the relatively low-core

NERSC and ALCF data transfer nodes, with memory-to-

memory transfers targeted at procuring insight about the ways

in which concurrency, parallelism, and threading influence

throughput for each of the four security options. These tests

also illustrate the behaviors of continually busy and core-

power limited systems in handling additional CPU-high loads

introduced by these experiments.

1) Nonthreaded Experiments: From the NERSC LAN,

ALCF LAN, and ALCF/NERSC WAN data gathered, the

following can be noticed:

• For the nonthreaded LAN experiments, less-secure trans-

fers are always at least 3 Gbps faster than more secure

transfers (see Figures 2(b), 2(c), and 3(a) as examples).

This difference in performance persists in all cases.

• For nonthreaded protected and encrypted WAN trans-

fers, increasing parallelism provides a minor performance

boost, but this effect is usually limited only up to a

parallelism of 4. Further increasing the number of parallel

streams returns negligible changes to throughput (see

Figure 1 as an example).

• For the nonthreaded WAN transfers, throughput from se-

cure transfers is comparable to that of nonsecure transfers

only for parallel values of 1, 2, and 4. The gap then

rapidly increases between the two groups of curves, as

the secure transfers cease benefitting from the increasing

parallelism, and the less-secure transfers continue to

benefit from it (see Figure 1).

From this information, we can deduce that for secure transfers,

a compute resource bottleneck occurs at approximately 4

parallel TCP streams. Clearly, this is a limitation on the

processing power, and not a network hindrance, because au-

thenticated and nonauthenticated transfers achieve exclusively

higher throughputs for corresponding secure pairs of transfers.

While all nonsecure LAN transfers are capped by possibly a

combination of network and CPU bottlenecks, in this case,

the WAN nonsecure transfers are constrained primarily by

compute resources (Figure 1). In fact, once the number of

parallel streams exceeds a threshold and a sufficiently high

load is introduced to the systems’ cores, average throughput

begins to decrease (Figure 2(c)).

2) Threaded Experiments: Experiments were run on the

ALCF and NERSC LANs to determine whether combinations

of concurrency and parallelism values can attain throughputs
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Fig. 1: Throughput between ALCF gs2 and NERSC dtn02,

nonthreaded transfers. Dataset: 32x4 GB. Concurrency = 2,

memory-to-memory.
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Fig. 3: Comparison of threaded and nonthreaded transfers on

4-core systems. Source: ALCF gs1. Destination: ALCF gs2.

Dataset: 1x32 GB. Transfers shown are memory-to-memory,

with concurrency of 1. (a) shows throughput of nonthreaded

LAN tests. (b) shows throughput of TCP threaded LAN tests

with 8 threads, as parallelism varies.
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Fig. 2: Comparison of threaded and nonthreaded transfers on 4-core systems: (a) and (b) demonstrate how throughputs better

than or comparable to those of threaded transfers can be obtained without using threading as an optimization parameter. Source:

NERSC dtn01. Destination: NERSC dtn02. Dataset: 32x4 GB. All transfers are memory-to-memory. (a) is the result of threaded

(with 8 threads) NERSC LAN transfers using TCP and concurrency of 1. (b) shows nonthreaded NERSC LAN throughputs

for concurrency of 8. (c) shows nonthreaded NERSC LAN throughputs for concurrency of 1.

for integrity-protected and encrypted transfers that are higher

than those reached with nonthreaded instances of globus-

gridftp-server. On all endpoints, the number of threads was

set to 8. An assessment of the NERSC LAN results produced

the following points:

• For concurrencies of 1 and 2, secure transfers performed

better when threaded. For concurrency of 1, threaded

protected-transfer throughput was more than double the

nonthreaded protected throughput; and it was quadruple

the nonthreaded encrypted (compare Figures 2(c) and (a)

for an example). For concurrency of 2, threaded encrypted

received approximately 500 Mbps more than did non-

threaded; and threaded integrity-protected received ap-

proximately 1 Gbps more than did nonthreaded protected

transfers.

• For concurrencies of 1 and 2, nonsecure transfers had

comparable performance, but threaded nonsecure trans-

fers seemed to benefit more from increases in parallelism.

• For concurrencies of 4, 8, and 16, authenticated and

unauthenticated transfers achieved higher (1–3 Gbps)

throughputs than did their nonthreaded counterparts.

• For concurrencies of 4, 8, and 16, nonthreaded protected

transfers received approximately 1 Gbps more than did

threaded protected transfers; while threaded and non-

threaded encrypted transfers performed the same. The

reason concurrency improves the performance of secure

transfers even when threading is not used is the following.

The concurrency option enables simultaneous transfer

of multiple files by creating separate GridFTP server

processes. The number of concurrent GridFTP server

processes created is min(concurrency value, number of

files in the dataset). This results in parallel security

processing on different CPUs in the system.

For a single, large file transfer on the ALCF LAN,

nonsecure threaded and nonthreaded transfers produced

comparable performance (Figure 3(a) and (b)). Threading with

TABLE I: Comparison of threaded and non-threaded ALCF

LAN and Ranger-to-Blacklight memory-to-memory transfers.

Dataset 1x32GB.

ALCF LAN Ranger to Blacklight

No Threading Threading No Threading Threading

auth.
(8, 3562) (16, 3640) (1, 230) (1, 308)

(1, 4524) (1, 4322) (32, 5391) (32, 5723)

non-auth.
(8, 3873) (8, 3957) (1, 314) (1, 313)

(1, 4442) (4, 4193) (32, 5598) (32, 5552)

protected
(16, 779) (1, 829) (1, 337) (1, 292)

(1, 799) (4, 1598) (16, 800) (16, 2683)

encrypted
(32, 349) (1, 353) (8, 240) (1, 230)

(1, 356) (4, 830) (2, 250) (16, 980)

TCP doubled integrity-protected and encrypted throughputs

(when comparing the maximum throughputs achieved by

nonthreaded and threaded TCP experiments shown in Table

I), from 799 Mbps to 1598 Mbps and from 356 Mbps

to 830 Mbps, respectively. The increase in throughput for

secure threaded TCP data connections with concurrency

of 1 on the ALCF LAN, relative to nonthreaded transfers

there, is consistent with the results of the NERSC LAN

experiments. Table I presents the minimum and maximum

throughputs encountered during the experiments, along with

the parallel value that produced each throughput. Each cell

consists of two pairs of elements (i, j), where i represents

the parallel value and j is the corresponding throughput.

In each cell, the top (i, j) element contains the minimum

throughput, and the bottom contains the maximum throughput.

C. Quadrupling the Number of Available Cores

We now discuss the outcomes of tests conducted on systems

capable of providing far more computational resources per

GridFTP process than the two heavily used production en-

vironments previously mentioned. In these experiments, both

the source (a Ranger node) and the destination (a Blacklight
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Fig. 4: Throughput for (a) nonthreaded WAN tests and (b)

threaded WAN tests using TCP and 32 threads. This figure

allows a side-by-side comparison of WAN threaded and non-

threaded tests on systems with 16 cores as parallelism varies.

Source: Ranger. Destination: Blacklight. Dataset: 1x32 GB.

Transfers had concurrency of 1 and were memory-to-memory.

node) are dedicated test systems that offer a total of 16 cores

each and are RTT=68 ms (round-trip time) apart.

When comparing figures 1 and 4(a), one can again

note the reoccurring pattern shared by nonthreaded memory-

to-memory WAN transfers: for concurrency of 1, encrypted

transfers are always capped at 500 Mbps; integrity-protected

transfers are always capped by 1 Gbps; and there rarely seems

to be an observable limit to authenticated and unauthenticated

transfers’ throughput as it climbs in a positive slope as the

number of parallel streams increases.

One can also observe for the nonthreaded 1×32 GB dataset

that changes in parallelism are negligible on nonthreaded

encrypted transfer throughput and that transfer speed does

not improve for protected nonthreaded transfers beyond 4

parallel streams. However, when the transfers are repeated with

32 threads on each end system (while using TCP), parallel

values of 2, 4, and 8 become meaningful even for encrypted

transfers, which are now capped by a 1 Gbps ceiling (Figure

4(b)). Protected threaded TCP transfers receive an enormous

benefit from parallel value of 8, and even parallelism of 16

seems to provide a small throughput bump for both protected

and encrypt transfers. Comparison of maximum values of

throughput achieved with threaded TCP and nonthreaded

experiments indicates that protected transfer speed is tripled,

from 800 Mbps to 2683 Mbps, and encrypted transfer speed

is almost quadrupled, from 250 Mbps to 980 Mbps (see Table

I). The maximum throughput for the two less-secure transfer

types remains approximately the same as in the nonthreaded

experiment.

The reason parallelism improves the performance of secure

transfers with threading is that the encryption protocol used

by GridFTP (TLS/SSL) requires that data be decrypted in

the same order that it was encrypted. Hence, we cannot take

portions of a single data stream and process them in parallel

on different CPUs. Parallel TCP streams optimization, which

GridFTP uses to minimize penalties associated with TCP slow

start and dropped packets, allows for parallel encryption when

the GridFTP server is threaded.

Although the configurations shown in the Ranger-to-

Blacklight experiment of Figure 4(b) probably do not produce

the optimal results that can be achieved from this data transfer,

they do illustrate the difference that a more efficient use of

existing resources can make during the span of a transfer. The

significant decrease in the throughput gap clearly shows that

with threading TCP transfers, unused processing power is now

contributing to the increase in performance.

D. Octupling the Number of Available Cores

Tests run between two Trestles compute nodes (with number

of threads equal to 64 for threaded transfers) described the

behavior of throughput for encrypted data transfers in the

presence of abundant logical cores.

1) NonThreaded Tests: Because of 1000 Mbps NICs used

on the interfaces between the Trestles compute nodes, the

throughputs of authenticated, unauthenticated, and protected

transfers were limited to approximately 900 Mbps (Figure

5(a)) for memory-to-memory transfers. The same is true for

disk-to-disk transfers except that the integrity-protected trans-

fer throughput limit observably decreased by 200–700 Mbps

because of the extra overhead. No decrease in throughput

is observed for authenticated and unauthenticated transfers

because the combined CPU and I/O load of disk-to-disk

transfers is still above the 1000 Mbps NIC limit (Figure 6).

However, this network bottleneck did not interfere with

the display of encrypted data transfer throughput for standard

memory-to-memory and disk-to-disk transfers. One can note

from the encrypted-transfer curves in Figures 5(a) and 6 that

despite the existence of 32 logical and mostly idle cores on

both endpoints, the utilization of compute power is extremely

feeble in the absence of threading.

2) Threaded Tests: For threaded TCP transfers on a 32-

core NIC-bound system, authenticated, unauthenticated, and

protected transfers still achieve throughputs equal to or greater

than the network (in this case NIC) bottleneck. However,

a rapid increase in performance is observed for encrypted

transfers as the number of parallel streams increases from 1

to 4, and a further gain of almost 100 Mbps in throughput

is attained as the parallel streams increase to 16 (Figure 5(b)).
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Fig. 5: Throughputs shown for (a) nonthreaded test and (b)

threaded (TCP with 64 threads) test on 32-core systems vs.

parallelism. Source: Trestles node 1. Destination: Trestles

node 2. Dataset for (a): 1x64 GB; (b): 1x64 GB for dcau,

nodcau, dcsafe; 1x16 GB for dcpriv. Memory-to-memory, con-

currency=1. Comparison of threaded and nonthreaded tests on

systems with 32 logical cores. Protected nonthreaded through-

puts match authenticated and unauthenticated throughputs,

while encrypted threaded throughput nearly reaches nonsecure

transfer performance.
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GB.

IV. CONCLUSION

The following are conclusions made as a result of analysis

of empirical data collected from experimentation on both

production and test environments:

• For systems with few cores, threaded transfers are ben-

eficial for concurrent values of 1 and 2, where they

maintain transfer speeds for authenticated and unauthen-

ticated transfers yet increase throughput for protected and

encrypted transfers.

• Threading with TCP is useful when the number of cores

is 16 (can be physical or hyperthreaded), but parallel

values of higher than 8 are not advantageous. For secure

transfers, throughput evens out after 16 or more parallel

TCP streams are used.

• For systems with 32 cores or higher, threading with

TCP is advantageous for improving encrypted-transfer

throughputs, even if such a system experiences a network

throughput cap lower than its compute-power limit.
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