
A Grid-Enabled MPI:

Message Passing in Heterogeneous Distributed Computing Systems

Ian Foster Nicholas T. Karonis

Mathematics and Computer Science High{Performance Computing Lab

Argonne National Laboratory Department of Computer Science

9700 South Cass Avenue Northern Illinois University

Argonne, IL 60439 DeKalb, IL 60115

Abstract

Application development for high-performance dis-
tributed computing systems, or computational grids as

they are sometimes called, requires \grid-enabled" tools
that hide mundane aspects of the heterogeneous grid
environment without compromising performance. As
part of an investigation of these issues, we have devel-
oped MPICH-G, a grid-enabled implementation of the
Message Passing Interface (MPI) that allows a user to
run MPI programs across multiple computers at dif-
ferent sites using the same commands that would be
used on a parallel computer. This library extends the
Argonne MPICH implementation of MPI to use ser-
vices provided by the Globus grid toolkit. In this paper,
we describe the MPICH-G implementation and present
preliminary performance results.

1 Introduction

High-performance \computational grids" [11] in-

volve heterogeneous collections of computers that may

reside in di�erent administrative domains, run di�erent

software, be subject to di�erent access control policies,

and be connected by networks with widely varying per-

formance characteristics. We believe that application

development in these environments requires specialized

\grid-enabled" tools that hide mundane aspects of the

heterogeneous grid environment without compromising

performance. These tools may implement familiar pro-

grammingmodels, such as message passing, data paral-

lelism, or object parallelism (perhaps with extensions),

or may implement completely new programming mod-

els. In either case, research is required to understand

the utility of di�erent approaches and the techniques

that may be used to implement these approaches in

di�erent environments.

As part of an investigation of these issues, we have

developed MPICH-G, a grid-enabled implementation

of the Message Passing Interface (MPI) that allows the

user to run MPI programs across multiple computers

at di�erent sites using the same commands that would

be used on a parallel computer. This library extends

the Argonne MPICH implementation of MPI [15] to

use services provided by the Globus grid toolkit [10],

as follows:

1. The Globus information service is used to deter-

mine how to obtain access to the computers in

question.

2. The Globus security service is used to handle au-

thentication and authorization at each site.

3. The Globus executable management service is

used to stage executables.

4. The Globus resource management service is used

to start processes on each computer, interfacing

with local schedulers where necessary.

5. The Globus communication service is used to man-

age the di�erent communication methods that

may apply in a heterogeneous environment, such

as vendor-supplied protocols or TCP/IP.

6. The Globus �le access service is used to direct

standard output and error (stdout and stderr)

streams to the user's terminal and to provide ac-

cess to �les regardless of location.

7. Globus process management facilities allow the

programmer to monitor the progress of an appli-

cation and terminate it if desired.

1



MPICH-G is a complete implementation of the MPI-

1 standard and passes the MPICH test suite. Early ex-

periences suggest that it achieves our goal of reducing

barriers to the use of distributed computing by allow-

ing the use of MPI as a portable, high-performance

programming model for heterogeneous clusters and for

wide-area computing systems. Several groups (e.g., at

Lawrence Livermore National Laboratory (LLNL) and

NASA Ames Research Center) are using it to run con-

ventional MPI programs across multiple massively par-

allel processors (MPPs) within the same machine room.

In this case, MPICH-G is used primarily to manage

startup and to achieve e�cient communication via use

of di�erent low-level communication methods. Other

groups are using MPICH-G for metacomputing exper-

iments, in which applications are distributed across

MPPs located at di�erent sites: Larsson for studies of

distributed execution of a large computational electro-

magnetics code [17], and Chen and Taylor in studies of

automatic partitioning techniques as applied to �nite

element codes [4]. MPICH-G can also be used to im-

plement distributed visualization pipelines and similar

applications in which components are located at di�er-

ent sites. In these latter examples, MPICH-G is used

to manage heterogeneous authentication and startup

mechanisms.

In the rest of this article, we describe the problems

that we faced in developing MPICH-G, the techniques

used to overcome these problems, and preliminary ex-

perimental results that indicate the costs associated

with the MPICH-G implementation.

2 The Need for Grid-Enabled Tools

An extensive body of experience shows that the

coupling of geographically distributed computers,

databases, scienti�c instruments, and people can en-

able interesting new applications. Distributed super-

computing [19], knowledge synthesis [20], online in-

strument control [16], and teleimmersion [6] are just

four examples. However, experience also shows that

the barriers to the construction of such applications

are considerable. Few programmers take the time to

master the intricacies of such grid environments, and

even then often produce applications that are fragile,

nonportable, and perform poorly.

The speci�c problems encountered by the develop-

ers of such grid applications vary widely according to

the grid environment and application type in question.

We use Figure 1 to illustrate some of the problems that

we have been concerned with in the development of

MPICH-G. This �gure shows three massively parallel

processing (MPP) systems, each constructed from sym-

metric multiprocessor (SMP) nodes. Two of the MPPs

are located within the same institution and hence are

connected by some form of (hopefully high-speed) local

area network (LAN), while the third is located at a re-

mote site and hence is reached by a wide area network

(WAN). The following is a partial list of the problems

that we may encounter in such an environment.

1. The two sites will likely operate di�erent authenti-

cation and authorization mechanisms and impose

di�erent access control policies. A user is unlikely

to have the same user id at the two sites.

2. The two sites are unlikely to share a �le sys-

tem. Hence, specialized techniques are required

to transfer executables and program �les between

sites.

3. The di�erent MPPs may be controlled by di�erent

schedulers with di�erent scheduling policies.

4. We need to allocate resources concurrently at

multiple sites and establish a single compu-

tational environment (in MPI terms, a single

MPI COMM WORLD) that spans those resources. (We

refer to this as the \co-allocation" problem.)

5. E�cient communication requires that di�erent

communication methods be used in di�erent sit-

uations. Within an SMP, shared-memory com-

munication should be used, whether by using

explicit shared-memory operations or by using

shared memory operations to provide fast imple-

mentations of other abstractions such as message

passing. Between SMPs within the same MPP, a

vendor-supplied message-passing library should be

used. Only between MPPs should the universally

available but slow TCP/IP be used. (An exception

to this rule is shown in the upper MPP in Figure 1.

In some cases, a limitation on the number of nodes

that can communicate using the vendor-supplied

library may require the use of TCP/IP even within

an MPP.)

6. The topology of the overall computational system

needs to be taken into account when implement-

ing communication algorithms. Taking into ac-

count the di�erent TCP/IP performance (in terms

of both absolute speeds and bisection bandwidths)

within an MPP, over a LAN, and over a WAN, the

example system features �ve di�erent communica-

tion speed regimes.

We believe that the solution to these types of prob-

lem is to develop grid-enabled tools that provide e�-

cient implementations of familiar (or unfamiliar) pro-

gramming models for use by application developers. In

2



TCP/IP over Switch

TCP/IP
over LAN

TCP/IP
over WAN

Shared memory

Shared memory

Message Passing Library

.

.

.

Shared memory

Shared memory

Message Passing Library

.

.

.

Shared memory

Shared memory

Message Passing Library

.

.

.

Shared memory

Shared memory

Message Passing Library

.

.

.

MPP
with
SMP
nodes

MPP
with
SMP
nodes

Remote
MPP
with
SMP
nodes

Figure 1. The structure of a prototypical “computational grid” computing environment, of the type
supported by MPICH-G. See text for details.

developing these implementations, the tool developer

must be concerned not only with translating the pro-

grammingmodel to the grid environment, but also with

revealing to the programmer those aspects of the grid

environment that impact performance. For example,

a grid-enabled MPI might handle automatically issues

of authorization, startup, and process management,

hence addressing the �rst four points listed above. It

might also incorporate specialized techniques for point-

to-point and collective communication in highly hetero-

geneous environments, hence addressing points 5 and 6.

Finally, it might also extend the MPI model to provide

programmers with access to resource location services,

information about grid topology, group communication

protocols, and quality-of-service management services,

so as to enable new programming techniques appropri-

ate for grid environments.

In principle, such grid-enabled tools could be con-

structed from scratch. However, the task is greatly

simpli�ed if the programmer has access to appropri-

ate low-level services. As we explain below, we use the

Globus toolkit as a source of such services in our work.

The state of the art with respect to such tools is not

very advanced. Systems such as Condor [18], NEOS [5],

and NetSolve [3] all implement grid-based program-

ming models of various sorts. Various implementations

of message passing libraries provide some support for

heterogeneous execution (e.g., p4 [2] and PVM [14]),

but these systems do not support the 
exible use of

alternative low-level communication protocols, inter-

faces to di�erent MPP schedulers, or the MPI stan-

dard. PVMPI [7] exploits a renaming capability pro-

vided by MPI's pro�ling interface to use PVM mech-

anisms to couple vendor-supplied MPIs on di�erent

MPPs. The resulting system supports heterogeneous

execution of MPI programs but cannot deal with het-

erogeneous startup mechanisms or dynamic selection

of communication methods.

3 Building Blocks

Our grid-enabled MPI implementation is con-

structed from two existing software systems: MPICH

and Globus. We describe these brie
y here.

3.1 MPICH

MPICH [15] is the most widely used implementa-

tion of the MPI standard. Its architecture features a

layered design, in which higher-level MPI communica-

tion constructs such as collective operations, communi-

cators, and topologies are implemented in terms of ba-

3



sic communication operations provided by an \abstract

device." Various such devices have been designed, en-

abling high-performance implementations of MPICH

on a variety of platforms. We exploit this device archi-

tecture in our work, de�ning a \Globus communication

device" that supports the use of multiple low-level com-

munication methods in heterogeneous wide area envi-

ronments.

MPICH also de�nes a uniform startup mechanism

for MPI programs. For example, the command

mpirun -np 64 myprog

starts the MPI program myprog as 64 processes,

whether on a shared-memory multiprocessor (via

fork), a set of workstations on a local area network

(e.g., via rsh), or on an MPP (e.g., via POE commands

on an IBM SP). Our MPICH-G implementation allows

the same command syntax to be used even when start-

ing programs across multiple MPPs of di�erent archi-

tectures. We believe that it is a signi�cant achievement

that we can provide a similarly simple and uniform in-

terface in much more complex grid environments.

3.2 Globus

Globus is a widely used toolkit for building wide

area applications. The toolkit comprises a set of inter-

related components, each providing services and asso-

ciated APIs that address a distinct aspect of wide area

computing [10]. Components developed to date are

1. the Nexus communication library, providing sup-

port for multimethod communication;

2. resource management services, providing uniform

interfaces to local schedulers and support for bro-

kering and co-allocation (see below);

3. security services, providing support for single sign-

on, multiway security contexts, and interfaces to

local security services;

4. �le access services, providing staging services and

uniform interfaces to �les, regardless of location;

5. an Lightweight Directory Ac-

cess Protocol (LDAP)-based information service,

the Metacomputing Directory Service (MDS), pro-

viding uniform access to up-to-date information

about Globus resource structure and state;

6. a fault detection service, providing a noti�cation

service for faulty processes; and

7. executable management services that support

staging of executables to remote computers.

Globus has distinct local service, global service, and

client components. At Globus sites, a small set of

servers provide (deliberately simple) local services such
as authentication, resource allocation, and status mon-

itoring. In particular, a Globus Resource Allocation

Manager (GRAM) implements a uniform interface to

local resources (computers, networks, etc.) for authen-

tication and allocation. Additional global services, de-
�ned in terms of these local services, provide more so-

phisticated functionality, such as resource brokering,

co-allocation of resources, and fault detection. Finally,

client libraries allow application programs and tools to

invoke local and global services.

Globus toolkit components are designed to support

the incremental development of grid-enabled tools and

applications. In principle, the user should be able to

take either an existing or new program and gradually

make it more \grid-aware" by introducing additional

services. Preliminary application experiences suggest

that this incremental development methodology works

well [10]. Various groups are using a similar methodol-

ogy to apply Globus components in other tool projects

(e.g., [1, 13]); however, MPICH-G is the most sophis-

ticated such system constructed to date.

4 The MPICH-G Library

We brie
y describe the techniques used to imple-

ment some of the MPICH-G capabilities listed in the

introduction.

4.1 Startup: mpirun and the machines File

MPICH provides a standard command for starting

MPI programs, namely, mpirun. This command spec-

i�es the number of processes that are to be created

and can also provide 
ags relating to debugging and so

forth.

On a parallel computer such as the IBM SP, the

MPICH implementation of mpirun simply generates

an appropriate job submission command to whatever

scheduler is used to obtain access to the MPP. On the

other hand, in a network of workstations environment,

a machines �le is accessed to determine which ma-

chines the MPI program should be started on. For

example, the following �le indicates that one process

should be started on each of donner and dalek, and

two processes on pitcairn.

donner

dalek

pitcairn 2

4



Our only change to the MPICH startup model is

that we generalize the contents of the machines �le to

include resource manager (GRAM) names. For exam-

ple, the following �le names three such resource man-

agers, at three di�erent sites:

donner.mcs.anl.gov-fork 8

bonny.isi.edu-fork 8

moti4.ncsa.uiuc.edu-lsf 64

The MPICH-G implementation then uses the

Globus information service, MDS, to perform a simple

form of resource location, accessing MDS to determine

detailed contact information (e.g., port numbers) for

the speci�ed resource managers. Hence, the user need

not be concerned with low-level details regarding the

physical location and interfaces of resources.

The user can build on this simple capability to im-

plement more sophisticated resource location schemes.

For example, rather than specifying node counts in the

machines �le, the user can perform an MDS search to

determine how many nodes are available on each ma-

chine, and can rewrite the machines �le appropriately.

Or, the user can perform an MDS search to locate re-

source managers with particular properties (e.g., idle

nodes and speci�ed network bandwidth) and then place

the names of those systems in the machines �le.

4.2 Job Submission and Execution

Once the machines �le has been read and resource

manager contacts determined, the MPICH-G mpirun

implementation calls a Globus-provided function called

globusrun to manage the task of job submission and

execution. This function uses a variety of Globus ser-

vices and libraries, as follows:

Co-allocation. As noted above, the creation of a

computation that spans multiple MPPs is a di�cult

problem. We must allocate resources on the selected

computers, start processes, and link these processes

into a computation. Di�erent computers di�er widely

in the mechanisms used for resource allocation and pro-

cess creation, so a �rst requirement is to negotiate the

appropriate mechanisms at each site. A second concern

is that startup can be a timeconsuming and error-prone

activity; hence, we require techniques for detecting fail-

ure (e.g., via timeout) and synchronizing once startup

completes. These two concerns are addressed via the

use of the GRAM interface (discussed above) and an

appropriate co-allocator library, respectively. MPICH-

G uses the Dynamically-Updated Request Online Co-

allocator (DUROC). DUROC submits requests, veri-

�es correct startup, and provides functions that can

then be used to coordinate the various subjobs so as

to create (in our current case) a single MPI COMM WORLD

spanning all processes. The need to reserve resources

at multiple sites simultaneously remains as a problem,

which we are investigating in current work.

Authentication and authorization. A signi�cant

obstacle to the use of multiple distributed resources is

that the user will typically have a distinct \trust re-

lationship" (e.g., account), or even no prior trust re-

lationship at all, at di�erent sites. Hence, starting a

program can be a frustrating process involving multi-

ple logins. MPICH-G avoids this because the Globus

Security Infrastructure supports single sign-on and au-

tomatic mapping (under site control) to appropriate

local accounts. Public key technology is used to avoid

the transfer of plaintext passwords.

Executable staging. Manual staging of executables

is another painful activity. MPICH-G overcomes this

obstacle by using the Globus \GlobalAccess Secondary

Storage" (GASS) service to stage executables to remote

machines. Currently, this technique works only if the

programmer has supplied an appropriate executable for

each remote computer. In future work, the Globus

group plans to investigate automated techniques for

identifying and generating appropriate executables, for

example by using compile servers.

Communication. As described in an earlier pa-

per [8] which focused speci�cally on multimethod com-

munication in MPICH-G, the Nexus communication

library is used to provide access to multiple com-

munication methods [9]: e.g., TCP/IP in the wide

area, vendor-speci�c protocols within a computer, and

shared memory within a cluster.

Monitoring, control, stdout. The globusrun util-

ity used by mpirun also provides a number of other use-

ful capabilities. Callbacks provided by GRAMs allow

it to detect and report termination. Control functions

provided by the GRAM API allow it to terminate a

computation in the event of a user signal (control-C)

or if a component fails. Finally, GASS mechanisms are

used to collect standard output and error streams and

route these back to the originating terminal.

5 Performance Studies

An empirical evaluation of a library such as MPICH-

G should, ideally, address at least the following issues:

5



1. Startup costs: What is the cost of the authentica-

tion, authorization, resource location/allocation,

and other management mechanisms? Are these

mechanisms scalable?

2. Communication costs: What is the impact of the

multimethod communication support on point-to-

point and collective communication performance,

for both simple benchmark programs and real ap-

plications, and in both homogeneous and hetero-

geneous environments?

3. Reliability: Are the management and communica-

tion mechanisms provided able to operate reliably

in wide area environments?

We present here preliminary results for point-to-

point communication performance in homogeneous sys-

tems; optimization in this con�guration, and other

measurements, are ongoing. We use the \ping-pong"

benchmark programs provided with MPICH [15] to

evaluate the performance of MPICH-G. We study per-

formance on an IBM SP2 system at Lawrence Liver-

more National Laboratory (LLNL). This system runs

AIX 4.3.1 and is con�gured with four-way SMP nodes

with 332 MHz PowerPC 604e processors. This con�g-

uration provides 1.2 GB/s bandwidth to memory and

150 MB/s switch bandwidth. All communication mea-

surements are between processors on di�erent nodes.

We measured performance for �ve di�erent commu-

nication libraries:

1. IBM-MPI, the nonthreaded IBM implementa-

tion of MPI.

2. IBM-MPL, the IBM implementation of MPL,

the original communication library provided on

the IBM SP.

3. MPICH-mpl, MPICH operating over the IBM

MPL library.

4. Nexus, the Globus communication library (also

operating over the IBM MPL library in this situ-

ation).

5. MPICH-G, MPICH-G operating over the Globus

communication library (which in turn uses the

IBM MPL library).

In addition, for each of these libraries we measured

performance when operating over two di�erent bind-

ings for the IBM and IBM MPL library: one that uses

the more e�cient user space communication and one

based on TCP/IP. Also, for Nexus and MPICH-G we

evaluated the impact of two di�erent values for the

\skip-poll" parameter, as discussed below. The results

are presented in Tables 1 and 2.

In brief, we �nd that when using user space commu-

nication, MPICH-G incurs an overhead of 48 �secfor

a zero-length message (when skip poll=10K) and

achieves 35 percent of the peak bandwidth achieved

by IBM's MPI. These are certainly not good results,

but nor are they dreadful, and on the basis of previ-

ous studies [12, 8], we believe that we understand the

source of these overheads and know how to eliminate

a signi�cant part of them, by eliminating extra copies,

improvingmemory management, and streamlining cer-

tain interfaces. Overall, we believe that we can achieve

performance close to that of MPICH-mpl in most sit-

uations.

The user space results for Nexus and MPICH-mpl

provide some insights into the nature of the overheads.

The zero-byte latency for Nexus is 42 �sec, while that

for MPICH-mpl is only 32 �sec; this di�erence re
ects

certain known overheads associated with the Nexus

communication model and implementation [12]. But

the bulk of the overhead (31 �sec) is clearly associated

with the layering of MPICH-G on Nexus, something

that we have not optimized carefully. The bandwidth

numbers for Nexus and MPICH-G are identical, indi-

cating that the overheads here lie in Nexus. The source

of this overhead is additional copies performed in the

Nexus system on send and receive. These can be cor-

rected, but the necessary optimizations have not yet

been performed.

When using TCP/IP for communication, MPICH-

G incurs a similar overhead for zero-length messages

(69 �sec) but now attains 61 percent of the band-

width achieved by IBM's MPI. The overheads asso-

ciated with the layering of MPICH-G over Nexus and

the bandwidth behaviors seen for Nexus andMPICH-G

are comparable to those seen in the user space case.

We comment �nally on the signi�cance of the skip

poll parameter. As discussed elsewhere [9], the perfor-

mance of multimethod systems that depend on polling

to detect incoming communications can be sensitive to

the frequency with which di�erent interfaces are polled.

In the current case, a user space poll is cheap (less than

one �sec), while an IP poll can cost 10s of microsec-

onds. Hence, a simple round-robin strategy that polls

the two interfaces in sequence will often delay the pro-

cessing of incoming user space communications. We

allow the user to control the polling strategy used by

providing a parameter \skip-poll" that speci�es how

many \fast" polls are performed before a slow poll is

performed. Hence, a very large skip-poll value such

as 10,000 is a close approximation to the case when

the slow protocol is not used at all, while skip-poll=0

6



Table 1. Preliminary performance results for MPICH-G: One-way message times on the LLNL IBM SP2

Communication Skip Latency Time (�sec) vs. Msg Size (bytes)

Library poll (�sec) 10 100 1K 10K 100K 1M

User space communication:

IBM-MPI 25 27 32 64 284 1745 12714

IBM-MPL 24 26 30 63 235 1673 12681

MPICH-mpl 32 33 44 75 233 1630 12888

Nexus 10K 42 44 48 88 356 3944 35252

MPICH-G 10K 73 76 80 121 363 3249 35813

Nexus 0 161 162 167 224 701 6424 59886

MPICH-G 0 360 362 368 443 958 6458 57016

TCP/IP-based communication:

IBM-MPI 131 134 143 251 976 4850 35272

IBM-MPL 129 133 141 251 718 4542 35061

MPICH-mpl 184 184 290 393 966 5800 35348

Nexus 10K 160 163 173 293 899 6993 57557

MPICH-G 10K 200 206 218 340 989 7058 58092

Nexus 0 287 289 294 430 1109 7856 62826

MPICH-G 0 530 544 558 693 1429 8141 62443

Table 2. Preliminary performance results for MPICH-G: Bandwidths on the LLNL IBM SP2

Communication Skip Latency Bandwidth (KB/sec) vs. Msg Size (bytes)

Library poll (�sec) 10 100 1K 10K 100K 1M

User space communication:

IBM-MPI 25 349 3034 15142 34381 55935 76809

IBM-MPL 24 370 3219 15396 41401 58358 77005

MPICH-mpl 32 292 2211 12975 41868 59882 75769

Nexus 10K 42 221 1995 10975 27366 24757 27701

MPICH-G 10K 73 128 1217 8067 26896 30051 27268

Nexus 0 161 60 583 4355 13918 15200 16312

MPICH-G 0 360 26 265 2201 10184 15121 17127

TCP/IP-based communication:

IBM-MPI 131 72 681 3884 10003 20132 27686

IBM-MPL 129 73 688 3882 13594 21498 27853

MPICH-mpl 184 52 336 2481 10099 16834 27626

Nexus 10K 160 59 563 3331 10854 13964 16966

MPICH-G 10K 200 47 446 2864 9869 13835 16810

Nexus 0 287 33 331 2271 8801 12430 15543

MPICH-G 0 530 17 174 1407 6833 11994 15639

7



corresponds to round-robin polling. We see from Ta-

bles 1 and 2 that the round-robin strategy performs

signi�cantly worse than skip-poll=0. Fortunately, ex-

perience shows that even quite small skip-poll values

can provide acceptable overheads while providing ea-

sonable responsiveness for the di�erent methods.

6 Future Work

We are working with colleagues to extend the

MPICH-G implementation in a number of areas.

Shared-memory support. To date, we have ex-

plored the use of just two communication meth-

ods: user-space communications within an MPP and

TCP/IP between MPPs. On computers such as the

IBM SP, we can also exploit more e�cient shared mem-

ory communications within SMP clusters, hence pro-

viding a total of three di�erent communication meth-

ods. We are working with colleagues at USC/ISI to

implement and evaluate this strategy.

Topology-aware communication operations. In

heterogeneous grid environments, collective operations

such as MPI REDUCE can execute signi�cantly faster

if their implementation takes advantage of knowledge

of the underlying system topology. For example, an

MPI REDUCE operation in the environment of Figure 1

might well �rst reduce within each SMP node, then

within each MPP, and �nally across MPPs. In order to

implement such optimizations, the MPICH implemen-

tation requires information about the topology of the

underlying machine. We are working with colleagues at

LLNL to identify the required information and will ex-

tend the Globus device with additional functions that

provide this information.

User-level communication structures can also take

advantage of topology information. In principle, MPI's

topology operations provide a basis for providing this

information to applications. We plan to study whether

these operations are indeed appropriate, or whether

MPI extensions are needed to allow programmers to

implement e�cient applications in wide area environ-

ments.

Looking further into the future, we are interested

in exploring more sophisticated techniques suitable for

true wide area operation, for example exploiting Nexus

support for multicast [21] and using network perfor-

mance information (e.g., [22]) to adapt a combining

tree structure in response to changing network loads.

MPI-2 extensions. The MPI-2 revisions to the MPI

standard introduce a number of new features, including

single-sided operations, dynamic process creation and

attachment, and parallel I/O. All three of these exten-

sions can, in principle, be incorporated into MPICH-

G easily: The Nexus communication library used in

MPICH-G provides a single-sided communication op-

eration as a primitive; Globus mechanisms support dy-

namic process creation and attachment; and a remote

I/O binding for MPI-IO has already been developed.

However, numerous details remain to be worked out in

each of these areas, and the MPICH framework itself

must be extended to support these new features.

7 Summary

We have described MPICH-G, an implementation of

the Message Passing Interface that uses services pro-

vided by the Globus toolkit to allow the use of MPI

in wide area environments. MPICH-G masks details

of underlying networks and computer architectures so

that diverse distributed resources can appear as a sin-

gle \MPI COMM WORLD." Any arbitrary MPI application

can be started on heterogeneous collections of machines

simply by typing mpirun: authentication, authoriza-

tion, executable staging, resource allocation, job cre-

ation, startup, and routing of stdout and stderr are all

handled for free.

We believe that MPICH-G is interesting not only

in its own right but also as a demonstration and test

case for Globus services. MPICH-G was constructed by

adapting MPICH, a widely used MPI implementation

for workstations and MPPs. This adaptation involved

the use of various Globus tools, for security, remote �le

access, synchronized startup, and multimethod com-

munication. Relatively few changes to MPICH were

required to support the use of these tools.

MPICH-G passes the MPICH test suite and is hence

ready for broad distribution and use. Work is continu-

ing on point-to-point performance optimization, appli-

cation development, and research investigations relat-

ing to collective operation performance, network topol-

ogy information, MPI-2 implementation, and other is-

sues.

Acknowledgments

We gratefully acknowledge the contributions of

Steven Tuecke, Brian Toonen, and Joe Bester to the

design of the MPICH-G system; the meticulous work

performed by Olle Larsson on MPICH-G performance

evaluation; and the assistance of Bill Gropp and Rusty

Lusk on MPICH implementation issues. We are also

grateful to the members of the Globus project team

8



at Argonne National Laboratory and the University

of Southern California's Information Sciences Institute

for their help.

This work was supported in part by the Mathemati-

cal, Information, and Computational Sciences Division

subprogram of the O�ce of Computational and Tech-

nology Research, U.S. Department of Energy, under

Contract W-31-109-Eng-38; by the Defense Advanced

Research Projects Agency under contract N66001-96-

C-8523; and by the National Science Foundation.

References

[1] D. Abramson, R. Sosic, J. Giddy, and B. Hall.

Nimrod: A tool for performing parameterised sim-

ulations using distributed workstations. In Proc.
4th IEEE Symp. on High Performance Distributed
Computing. IEEE Computer Society Press, 1995.

[2] R. Butler and E. Lusk. Monitors, message, and

clusters: The p4 parallel programming system.

Parallel Computing, 20:547{564, April 1994.

[3] Henri Casanova and Jack Dongarra. Netsolve: A

network server for solving computational science

problems. Technical Report CS-95-313, University

of Tennessee, November 1995.

[4] Jian Chen and Valerie Taylor. Mesh partition-

ing for distributed systems. In Proc. 7th IEEE
Symp. on High Performance Distributed Comput-
ing. IEEE Computer Society Press, 1998.

[5] Joseph Czyzyk, Michael P. Mesnier, and Jorge J.

Mor�e. The Network-Enabled Optimization Sys-

tem (NEOS) Server. Preprint MCS-P615-0996,

Argonne National Laboratory, Argonne, Illinois,

1996.

[6] Tom DeFanti and Rick Stevens. Teleimmersion.

In [11], pages 131{156.

[7] G. Fagg, J. Dongarra, and A. Geist. PVMPI pro-

vides interoperability between MPI implementa-

tions. In Proc. 8th SIAM Conf. on Parallel Pro-
cessing. SIAM, 1997.

[8] I. Foster, J. Geisler, W. Gropp, N. Karonis,

E. Lusk, G. Thiruvathukal, and S. Tuecke. A wide-

area implementation of the Message Passing Inter-

face. Parallel Computing, 1998. to appear.

[9] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke.

Managing multiple communication methods in

high-performance networked computing systems.

Journal of Parallel and Distributed Computing,
40:35{48, 1997.

[10] I. Foster and C. Kesselman. The Globus project:

A status report. In Proceedings of the Hetero-
geneous Computing Workshop, pages 4{18. IEEE
Computer Society Press, 1998.

[11] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a Future Computing Infrastructure.
Morgan Kaufmann Publishers, 1999.

[12] I. Foster, C. Kesselman, and S. Tuecke. The Nexus

approach to integrating multithreading and com-

munication. Journal of Parallel and Distributed
Computing, 37:70{82, 1996.

[13] D. Gannon, P. Beckman, E. Johnson, and

T. Green. Compilation Issues on Distributed
Memory Systems, chapter HPC++ and the

HPC++Lib Toolkit. Springer Verlag, 1997.

[14] A. Geist, A. Beguelin, J. Dongarra, W. Jiang,

B. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine|A User's Guide and Tutorial
for Network Parallel Computing. MIT Press, 1994.

[15] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A

high-performance, portable implementation of the

MPI message passing interface standard. Parallel
Computing, 22:789{828, 1996.

[16] WilliamJohnston. Realtime widely distributed in-

strumentation systems. In [11], pages 75{103.

[17] Olle Larsson. Implementation and performance

analysis of a high-order CEM algorithm in paral-

lel and distributed environments. Master's thesis,

University of Houston, 1998.

[18] M. Litzkow, M. Livny, and M. Mutka. Condor -

a hunter of idle workstations. In Proc. 8th Intl
Conf. on Distributed Computing Systems, pages
104{111, 1988.

[19] Paul Messina. Distributed supercomputing appli-

cations. In [11], pages 55{73.

[20] Reagan Moore, Chaitanya Baru, Richard Mar-

ciana, Arcot Rajasekar, and Michael Wan. Data-

intensive computing. In [11], pages 105{129.

[21] L. Moser, P. Melliar-Smith, D. Agarwal, R. Bud-

hia, and C. Lingley-Papadopoulos. Totem: A

fault-tolerant multicast group communication sys-

tem. Communications of the ACM, 39(4), 1996.

[22] R. Wolski. Forecasting network performance to

support dynamic scheduling using the network

weather service. In Proc. 6th IEEE Symp. on
High Performance Distributed Computing, Port-
land, Oregon, 1997. IEEE Press.

9


