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Abstract
The Globus project is a multi-institutional research

effort that seeks to enable the construction of com-
putational grids providing pervasive, dependable, and
consistent access to high-performance computational
resources, despite geographical distribution of both re-
sources and users. Computational grid technology
is being viewed as a critical element of future high-
performance computing environments that will enable
entirely new classes of computation-oriented applica-
tions, much as the World Wide Web fostered the de-
velopment of new classes of information-oriented ap-
plications. In this paper, we report on the status of
the Globus project as of early 1998. We describe the
progress that has been achieved to date in the devel-
opment of the Globus toolkit, a set of core services
for constructing grid tools and applications. We also
discuss the Globus Ubiquitous Supercomputing Testbed
(GUSTO) that we have constructed to enable large-
scale evaluation of Globus technologies, and we review
early experiences with the development of large-scale
grid applications on the GUSTO testbed.

1 Introduction
Advances in networking technology and compu-

tational infrastructure make it possible to construct
large-scale high-performance distributed computing
environments, or computational grids that provide de-
pendable, consistent, and pervasive access to high-end
computational resources. These environments have
the potential to change fundamentally the way we
think about computing, as our ability to compute will
no longer be limited to the resources we currently
have on hand. For example, the ability to integrate
TFLOP/s computing resources on demand will allow
us to integrate sophisticated analysis, image process-
ing, and real-time control into scientific instruments
such as microscopes, telescopes, and MRI machines.
Or, we can call upon the resources of a nationwide
strategic computing reserve to perform time-critical

computational tasks in times of crisis, for example to
perform diverse simulations as we plan responses to
an oil spill.

In the past, high-performance distributed compu-
tation has been achieved on a limited scale by heroic
efforts such as the CASA Gigabit testbed [26] and the
I-WAY [12]. The work of ourselves and others on com-
putational grids differs from these ground-breaking ef-
forts in that we seek to make commonplace the inte-
gration of remote resources into a computation. To a
large extent, the development of usable computational
grids is hindered not by available hardware capabil-
ities but by limitations in the software abstractions
and services that are currently in use. Existing net-
work tools are focused on supporting communication,
not computation, while current distributed comput-
ing systems are not performance driven and typically
are limited to client/server models of computation.
Clearly, the success of computational grids will depend
on the existence of grid-specific middleware that ad-
dresses the needs of computations including dynamic
resource allocation, resource co-allocation, heteroge-
neous and dynamic computational and communica-
tion substrates, and process-oriented security.

We have been studying the problems associated
with constructing usable computational grids since
1995, first in the context of the I-WAY networking
experiment [12] and subsequently as part of a project
called Globus. The goal of Globus is to understand
application requirements for a usable grid and to de-
velop the essential technologies required to meet these
requirements. In pursuit of this goal, we have devel-
oped a research program comprising three broad ac-
tivities:

• developing the basic technology and high-level
tools required for computational grids;

• constructing a large-scale, prototype computa-
tional grid (i.e., testbed) using the basic technolo-
gies and tools we have developed; and



• executing realistic applications on the prototype
grid, in order to evaluate the utility of our tech-
nologies and of the grid concept.

In this paper, we describe the status of the Globus
project in each of these three areas, as of early
1998. This description updates the original Globus pa-
per [13] and a subsequent project summary in [14] by
providing a more complete and up-to-date description
of the Globus toolkit and by reviewing early exper-
iments with the Globus Ubiquitous Supercomputing
Testbed (GUSTO) grid prototype, the largest compu-
tational grid constructed to date.

The organization of this paper is as follows. In the
next section, we outline the basic architecture of the
Globus system, identifying the basic principles that
motivate its design. In Sections 3–7, we describe the
set of basic services that constitute the Globus toolkit
that underlies our approach, and in Section 8 we re-
view some of the higher-level tools that have been con-
structed with this toolkit. In Section 9, we describe
our experiences deploying these tools in the GUSTO
grid testbed, and in Section 10 we review our experi-
ences developing applications. We conclude the paper
with a brief survey of some related work (Section 11)
and a description of our future plans (Section 12).

2 Globus Overview
A central element of the Globus system is the

Globus Metacomputing Toolkit, which defines the ba-
sic services and capabilities required to construct a
computational grid. The design of this toolkit was
guided by the following basic principles.

The toolkit comprises a set of components that im-
plement basic services for security, resource location,
resource management, communication, etc.. The ser-
vices currently defined by Globus are listed in Table 1.
Computational grids must support a wide variety of
applications and programming models. Hence, rather
than providing a uniform programming model, such
as the object-oriented model defined by the Legion
system [18], the Globus toolkit provides a “bag of ser-
vices” from which developers of specific tools or appli-
cations can select to meet their needs.

Because services are distinct and have well-defined
interfaces, they can be incorporated into applications
or tools in an incremental fashion. We illustrate this
mix-and-match approach to metacomputing in Sec-
tions 8 and 10, where we describe how different parallel
tools and a large application can be made grid aware
by incorporating different services.

The toolkit distinguishes between local services,
which are kept simple to facilitate deployment, and

global services, which are constructed on top of lo-
cal services and may be more complex. Computa-
tional grids require that a wide range of services be
supported on a highly heterogeneous mix of systems
and that it be possible to define new services with-
out changing the underlying infrastructure. An estab-
lished architectural principle in such situations, as ex-
emplified by the Internet Protocol suite [6], is to adopt
a layered architecture with an “hourglass” shape (Fig-
ure 1). A simple, well-defined interface—the neck of
the hourglass—provides uniform access to diverse im-
plementations of local services; higher-level global ser-
vices are then defined in terms of this interface. To
participate in a grid, a local site need provide only the
services defined at the neck, and new global services
can be added without local changes. We discuss this
organization in greater detail in Section 3.

Interfaces are defined so as to manage heterogene-
ity, rather than hiding it. These so-called translucent
interfaces provide structured mechanisms by which
tools and applications can discover and control as-
pects of the underlying system. Such translucency
can have significant performance advantages because,
if an implementation of a higher-level service can un-
derstand characteristics of the lower-level services on
which the interface is layered, then the higher-level
service can either control specific behaviors of the un-
derlying service or adapt its own behavior to that of
the underlying service. Translucent interfaces do not
imply complex interfaces. Indeed, we will show that
translucency can be provided via simple techniques,
such as adding an attribute argument to the interface.
We discuss these issues at greater length in Section 4,
when we describe Globus communication services.

An information service is an integral component of
the toolkit. Computational grids are in a constant
state of flux as utilization and availability of resources
change, computers and networks fail, old components
are retired, new systems are added, and software and
hardware on existing systems are updated and mod-
ified. It is rarely feasible for programmers to rely on
standard or default configurations when building ap-
plications. Rather, applications must discover charac-
teristics of their execution environment dynamically
and then either configure aspects of system and ap-
plication behavior for efficient, robust execution or
adapt behavior during program execution. A funda-
mental requirement for discovery, configuration, and
adaptation is an information-rich environment that
provides pervasive and uniform access to information
about the current state of the grid and its underly-
ing components. In the Globus toolkit, a component



Table 1: Core Globus services. As of early 1998, these include only those services deemed essential for an evaluation
of the Globus design philosophy on realistic applications and in medium-scale grid environments. Other services
such as accounting, auditing, and instrumentation will be addressed in future work

Service Name Description
Resource management GRAM Resource allocation and process management
Communication Nexus Unicast and multicast communication services
Security GSI Authentication and related security services
Information MDS Distributed access to structure and state information
Health and status HBM Monitoring of health and status of system components
Remote data access GASS Remote access to data via sequential and parallel interfaces
Executable management GEM Construction, caching, and location of executables

Internet
Protocol

Ethernet    FDDI    . . .
  ATM     SONET

TCP    FTP    HTTP
  VIC/VAT     . . .

GRAM
Protocol

Nexus
Protocol

Condor    LSF    NQE
  LoadLeveler   EASY-LL

IP    Message-passing
Shared-memory    ATM

Resource brokers
Resource co-allocators

MPI    CC++    HPC++
PAWS    CORBA     . . .

Figure 1: The hourglass principle, as applied in the Internet Protocol suite, Globus resource management services,
and Globus communication services



called the Metacomputing Directory Service [9], dis-
cussed in Section 5, fulfills this role.

The toolkit uses standards whenever possible for
both interfaces and implementations. We envision
computational grids as supporting an important niche
of applications that must co-exist with more general-
purpose distributed and networked computing appli-
cations such as CORBA, DCE, DCOM, and Web-
based technologies. The Internet community and
other groups are moving rapidly to develop official and
de facto standards for interfaces, protocols, and ser-
vices in many areas relevant to computational grids.
There is considerable value in adopting these stan-
dards whenever they do not interfere with other goals.
Consequently, the Globus components we will describe
are not, in general, meant to replace existing inter-
faces, but rather seek to augment them. The utility of
standards is emphasized in Section 6, which describes
the Globus security infrastructure.

3 Resource Management
We now dexcribe more fully the Globus compo-

nents listed in Table 1. We start by considering re-
source management. Both this discussion and the cur-
rent Globus implementation focus on the management
of computational resources. Management of memory,
storage, networks, and other resources is clearly also
important and is being considered in current research.

Globus is a layered architecture in which high-level
global services are built on top of an essential set of
core local services. At the bottom of this layered ar-
chitecture, the Globus Resource Allocation Manager
(GRAM) provides the local component for resource
management [8]. Each GRAM is responsible for a set
of resources operating under the same site-specific al-
location policy, often implemented by a local resource
management system, such as Load Sharing Facility
(LSF) or Condor. For example, a single manager could
provide access to the nodes of a parallel computer,
a cluster of workstations, or a set of machines oper-
ating within a Condor pool [25]. Thus, a computa-
tional grid built with Globus typically contains many
GRAMs, each responsible for a particular “local” set
of resources.

GRAM provides a standard network-enabled inter-
face to local resource management systems. Hence,
computational grid tools and applications can express
resource allocation and process management requests
in terms of a standard application programming inter-
face (API), while individual sites are not constrained
in their choice of resource management tools. GRAM
can currently operate in conjunction with six different
local resource management tools: Network Queuing

Environment (NQE), EASY-LL, LSF, LoadLeveler,
Condor, and a simple “fork” daemon. Within the
GRAM API, resource requests are expressed in terms
of an extensible resource specification language (RSL);
as we describe below, this language plays a critical role
in the definition of global services.

GRAM services provide building blocks from which
we can construct a range of global resource manage-
ment strategies. Building on GRAM, we have defined
the general resource management architecture [8] il-
lustrated in Figure 2. RSL is used throughout this
architecture as a common notation for expressing re-
source requirements. Resource requirements are ex-
pressed by an application in terms of a high-level RSL
expression. A variety of resource brokers implement
domain-specific resource discovery and selection poli-
cies by transforming abstract RSL expressions into
progressively more specific requirements until a spe-
cific set of resources is identified. For example, an ap-
plication might specify a computational requirement
in terms of floating-point performance (MFLOPs). A
high-level broker might narrow this requirement to a
specific type of computer (an IBM SP2, for example),
while another broker might identify a specific set of
SP2 computers that can fulfill that request. At this
point, we have a so-called ground RSL expression in
which a specific set of GRAMs are identified.

The final step in the resource allocation process is
to decompose the RSL into a set of separate resource
allocation requests and to dispatch each request to
the appropriate GRAM. In high-performance compu-
tations, it is often important to co-allocate resources
at this point, ensuring that a given set of resources
is available for use simultaneously. Within Globus, a
resource co-allocator is responsible for providing this
service: breaking the RSL into pieces, distributing it
to the GRAMs, and coordinating the return values.
Different co-allocators can be constructed to imple-
ment different approaches to the problems of allocat-
ing and managing ensembles of resources. We cur-
rently have two allocation services implemented. The
first defines a simple atomic co-allocation semantics.
If any of the requested resources are unavailable for
some reason, the entire co-allocation request fails. In
practice, this strategy has proven to be too inflexible
in many situations. Based on this experience, we have
implemented a second co-allocator, which allows com-
ponents of the submitted RSL expression to be mod-
ified until the application or broker issues a commit
operation.

Notice that a consequence of the Globus resource
management architecture is that resource and com-
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Figure 2: The Globus resource management architecture, showing how RSL specifications pass between appli-
cation, resource brokers, resource co-allocators, and local managers (GRAMs). Notice the central role of the
information service.

putation management services are implemented in a
hierarchical fashion. An individual GRAM supports
the creation and management of a set of processes, or
Globus job, on a set of local resources. A computation
created by a global service may then consist of one or
more jobs, each created by a request to a GRAM and
managed via management functions implemented by
that GRAM.

This discussion of Globus resource management ser-
vices illustrates how simple local services, if appropri-
ately designed, can be used to support a rich set of
global functionality.

4 Communication
Communication services within the Globus toolkit

are provided by the Nexus communication library [15].
As illustrated in Figure 1, Nexus defines a relatively
low-level communication API that is then used to sup-
port a wide range of higher-level communication li-
braries and languages, based on programming mod-
els as diverse as message passing, as in the Message
Passing Interface (MPI) [10]; remote procedure call,
as in CC++ [5]; striped transfer, as in the Paral-
lel Application Workspace (PAWS); and distributed
database updates for collaborative environments, as
in CAVERNsoft. Nexus communication services are
also used extensively in the implementation of other
Globus modules.

The communication needs of computational grid
applications are diverse, ranging from point-to-point
message passing to unreliable multicast communica-

tion. Many applications, such as instrument control
and teleimmersion, use several modes of communica-
tion simultaneously. In our view, the Internet Proto-
col does not meet these needs: its overheads are high,
particularly on specialized platforms such as parallel
computers; the TCP streaming model is not appro-
priate for many interactions; and its interface pro-
vides little control over low-level behavior. Yet tra-
ditional high-performance computing communication
interfaces such as MPI do not provide the rich range
of communication abstractions that grid applications
will require. Hence, we define an alternative communi-
cation interface designed to support the wide variety of
underlying communication protocols and methods en-
countered in grid environments and to provide higher-
level tools with a high degree of control over the map-
ping between high-level communication requests and
underlying protocol operations. We call this interface
Nexus [15, 11].

Communication in Nexus is defined in terms of two
basic abstractions. A communication link is formed by
binding a communication startpoint to a communica-
tion endpoint (Figure 4); a communication operation
is initiated by applying a remote service request (RSR)
to a startpoint. This one-sided, asynchronous remote
procedure call transfers data from the startpoint to the
associated endpoint(s) and then integrates the data
into the process(es) containing the endpoint(s) by in-
voking a function in the process(es). More than one
startpoint can be bound to an endpoint and vice versa,
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Figure 3: This view of the Globus resource management architecture shows how different types of broker can
participate in a single resource request

allowing for the construction of complex communica-
tion structures.

The communication link/RSR communication
model can be mapped into many different communi-
cation methods, each with potentially different perfor-
mance characteristics [11]. Communication methods
include not only communication protocols, but also
other aspects of communication such as security, reli-
ability, quality of service, and compression. By associ-
ating attributes with a specific startpoint or endpoint,
an application can control the communication method
used on a per-link basis. For example, an application
in which some communications must be reliable while
others require low latencies can establish two links be-
tween two processes, with one configured for reliable—
and potentially high-latency—communication and the
other for low-latency unreliable communication.

High-level selection and configuration of low-level
methods is useful only if the information required to
make intelligent decisions is readily available. Within
Globus, MDS (discussed in Section 5) maintains a
wealth of dynamic information about underlying com-
munication networks and protocols, including network
connectivity, protocols supported, and network band-
width and latency. Applications, tools, and higher-
level libraries can use this information to identify avail-

able methods and select those best suited for a partic-
ular purpose.

High-level management of low-level communication
methods has many uses. For example, an MPI imple-
mentation layered on top of Nexus primitives can not
only select alternative low-level protocols (e.g., mes-
sage passing, IP, or shared memory) based on network
topology and the location of sender and receiver [10],
but can simultaneously apply selective use of encryp-
tion based on the source and destination of a message.
The ability to attach network quality of service speci-
fications to communication links is also useful.

Nexus illustrates how Globus services use translu-
cent interfaces to allow applications to manage rather
than hide heterogeneity. An application or higher-
level library can express all operations in terms of
a single uniform API; the resulting programs are
portable across, and will execute efficiently on, a wide
variety of computing platforms and networks. To this
extent Nexus, like other Globus services, hides het-
erogeneity. However, in situations where performance
is critical, properties of low-level services can be dis-
covered. The higher-level library or application can
then either adapt its behavior appropriately or use a
control API to manage just how high-level behavior is
implemented: for example, by specifying that it is ac-
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Figure 4: Nexus communication mechanisms. The figure shows three processes and three communication links.
Three startpoints in process 1 reference endpoints in processes 0 and 2.

ceptable to use an unreliable communication protocol
for a particular set of communications.

5 Information
The dynamic nature of grid environments means

that toolkit components, programming tools, and ap-
plications must be able to adapt their behavior in re-
sponse to changes in system structure and state. The
Globus Metacomputing Directory Service (MDS) [9]
is designed to support this type of adaptation by pro-
viding an information-rich environment in which in-
formation about system components is always avail-
able. MDS stores and makes accessible information
such as the architecture type, operating system ver-
sion and amount of memory on a computer, network
bandwidth and latency, available communication pro-
tocols, and the mapping between IP addresses and
network technology.

MDS provides a suite of tools and APIs for dis-
covering, publishing, and accessing information about
the structure and state of a computational grid. As
in other Globus components, official or de facto stan-
dards are used in MDS whenever possible. In this case,
the standards in question are the data representation
and API defined by the Lightweight Directory Access
Protocol (LDAP) [22], which together provide a uni-
form, extensible representation for information about
grid components. LDAP defines a hierarchical, tree-
structured name space called a directory information
tree and is designed as a distributed service: arbi-
trary subtrees can be associated with distinct servers.
Hence, the local service required to support MDS is ex-
actly an LDAP server (or a gateway to another LDAP
server, if multiple sites share a server), plus the utili-
ties used to populate this server with up-to-date infor-
mation about the structure and state of the resources
within that site. The global MDS service is simply the
ensemble of all these servers.

An information-rich environment is more than just
mechanisms for naming and disseminating informa-

tion: it also requires agents that produce useful in-
formation and components that access and use that
information. Within Globus, both these roles are dis-
tributed over every system component—and poten-
tially over every application. Every Globus service
is responsible for producing information that users of
that service may find useful, and for using information
to enhance its flexibility and performance. For exam-
ple, each local resource manager (Section 3) incorpo-
rates a component called the GRAM reporter respon-
sible for collecting and publishing information about
the type of resources being managed, their availabil-
ity, and so forth. Resource brokers use this and other
information for resource discovery.

6 Security
Security in computational grids is a multifaceted is-

sue, encompassing authentication, authorization, pri-
vacy, and other concerns. While the basic crypto-
graphic algorithms that form the basis of most secu-
rity systems—such as public key cryptography—are
relatively simple, it is a challenging task to use these
algorithms to meet diverse security goals in complex,
dynamic grid environments, with large and dynamic
sets of users and resources and fluid relationships be-
tween users and resources.

The Globus security infrastructure developed for
the initial Globus toolkit focuses on just one prob-
lem, authentication: the process by which one entity
verifies the identity of another. We focus on authen-
tication because it is the foundation on which other
security services, such as authorization and encryp-
tion, are built; these issues will be addressed in future
work.

Authentication solutions for computational grids
must solve two problems not commonly addressed by
standard authentication technologies. The first prob-
lem that must be addressed by a grid authentication
solution is support for local heterogeneity. Grid re-
sources are operated by a diverse range of entities,



each defining a different administrative domain. Each
domain will have its own requirements for authenti-
cation and authorization, and consequently, domains
will have different local security solutions, mecha-
nisms, and policies, such as one-time passwords, Ker-
beros [29], and Secure Shell. We will have limited
ability to change these administrative decisions, and
any security solution must confront this heterogeneity.

The second problem facing security solutions for
computational grids is the need to support N-way se-
curity contexts. In traditional client-server applica-
tions, authentication involves just a single client and
a single server. In contrast, a grid computation may
acquire, start processes on, and release many resources
dynamically during its execution. These processes will
communicate by using a variety of mechanisms, in-
cluding unicast and multicast. These processes form
a single, fully connected logical entity, although low-
level communication connections (e.g., TCP/IP sock-
ets) may be created and deleted dynamically during
program execution. A security solution for a computa-
tional grid must enable the establishment of a security
relationship between any two processes in a computa-
tion.

A first important step in the design of a security
architecture, often overlooked, is to define a secu-
rity policy: that is, to provide a precise definition of
what it means for the system in question to be se-
cure. This policy identifies what components are to
be protected and what these components are to be
protected against, and defines security operations in
terms of abstract algorithms. The policy defined for
Globus is shaped by the need to support N-way se-
curity contexts and local heterogeneity. The policy
specifies that a user authenticate just once per com-
putation, at which time a credential is generated that
allows processes created on behalf of the user to ac-
quire resources, and so forth, without additional user
intervention. Local heterogeneity is handled by map-
ping a user’s Globus identity into local user identities
at each resource.

One important aspect of the security policy de-
fined by Globus is that encrypted channels are not
used. Globus is intended to be used internationally,
and several countries (including the United States and
France) have restrictive laws with respect to encryp-
tion technology. The Globus policy relies only on dig-
ital signature mechanisms, which are more easily ex-
portable from the United States.

The Globus security policy is implemented by the
Globus security infrastructure (GSI). GSI, like other
Globus components, has a modular design in which

diverse global services are constructed on top of a sim-
ple local service that addresses issues of local hetero-
geneity. As illustrated in Figure 5, the local security
service implements a security gateway that maps au-
thenticated Globus credentials into locally recognized
credentials at a particular site: for example, Kerberos
tickets, or local user names and passwords. A bene-
fit of this approach is that we do not require “group”
accounts and so can preserve the integrity of local ac-
counting and auditing mechanisms.

The internal design of GSI emphasizes the impor-
tant role that standards have to play in the definition
of grid services and toolkits. Several of the problems
that GSI is designed to solve, namely, support for dif-
ferent local mechanisms and N-way security contexts,
are not supported by any existing system. Neverthe-
less, GSI’s ability to interoperate with other systems,
to achieve independence from low-level mechanisms,
and to leverage existing code is enhanced by coding
all security algorithms in terms of the Generic Se-
curity Service (GSS) standard [24]. GSS defines a
standard procedure and API for obtaining credentials
(passwords or certificates), for mutual authentication
(client and server), and for message-oriented signa-
ture, encryption and decryption. GSS is independent
of any particular security mechanism and can be lay-
ered on top of different security methods. To promote
interoperability, the GSS standard defines how GSS
functionality should be implemented on top of Ker-
beros and public key cryptography. GSS also defines
a negotiation mechanism that allows two parties to se-
lect a mutually agreeable suite of security mechanisms,
should alternatives exist.

GSI currently supports two security mechanisms,
both accessible through the GSS interface. The first
is a plaintext password system, which basically imple-
ments Unix rlogin type authentication. The plain-
text implementation has the advantage of being easy
to develop and debug and is not encumbered by export
controls. The second mechanism uses public key cryp-
tography and is based on the authentication protocol
defined by the Secure Socket Layer (SSL) [21]. This
implementation has the advantages of much stronger
security and interoperability with a variety of com-
modity services, including LDAP and HTTP. We note
that GSS supports a negotiation mechanism, which
allows us to support both security mechanisms simul-
taneously in the Globus environment.

7 Other Globus Services
We briefly describe the other three Globus ser-

vices listed in Table 1: health and status monitoring,
remote access to files, and executable management.
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The Heartbeat Monitor (HBM) service provides sim-
ple mechanisms for monitoring the health and status
of a distributed set of processes. The HBM architec-
ture comprises a client interface and a data-collector
API. The client interface allows a process to register
with the HBM service, which then expects to receive
regular heartbeats from the process. If a heartbeat is
not received, the HBM service attempts to determine
whether the process itself is faulty or whether the un-
derlying network or computer has failed. The data-
collector API allows another process to obtain infor-
mation regarding the status of registered process; this
information can then be used to implement a variety of
fault detection and, potentially, fault recovery mecha-
nisms. HBM mechanisms are used to monitor the sta-
tus of core Globus services, such as GRAM and MDS.
They can also be used to monitor distributed appli-
cations and to implement application-specific fault re-
covery strategies.

Access to remote files is provided by the Global Ac-
cess to Secondary Storage (GASS) subsystem. This
system allows programs that use the C standard
I/O library to open and subsequently read and write
files located on remote computers, without requiring
changes to the code used to perform the reading and
writing. As illustrated in Figure 6, files opened for
reading are copied to a local file cache when they are
opened, hence permitting subsequent read operations
to proceed without communication and also avoiding

repeated fetches of the same file. Reference counting
is used to determine when files can be deleted from
the cache. Similarly, files opened for writing are cre-
ated locally and copied to their destination only when
they are closed. A similar copying strategy is used
in UFO [2], but our implementation does not rely on
the Unix-specific proc file system. GASS also allows
files to be opened for remote appending, in which case
data is communicated to the remote file as soon as it
is written; this mode is useful for log files, for exam-
ple. In addition, GASS supports remote operations
on caches and hence, for example, program-directed
prestaging and migration of data. HTTP, FTP, and
specialized GASS servers are supported.

Finally, the Globus Executable Management
(GEM) service, still being designed as of January
1998, is intended to support the identification, loca-
tion, and creation of executables in heterogeneous en-
vironments. GEM provides mechanisms for matching
the characteristics of a computer in a computational
grid with the runtime requirements of an executable
or library. These mechanisms can be used in conjunc-
tion with other Globus services to implement a vari-
ety of distributed code management strategies, based
for example on online executable archives and compile
servers.

8 High-Level Tools
While Globus services can be used directly by ap-

plication programmers, they are more commonly ac-
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Figure 6: The Global Access to Secondary Storage (GASS) subsystem allows processes on local computers to
read and write remote files. Copies of remote files opened for reading and/or writing are maintained in a local file
cache. A simple database keeps track of the local file name, access mode, reference count, and remote file URL.

cessed via higher-level tools developed by tool develop-
ers. We illustrate this type of use with four examples:
a message-passing library, a parallel language, a re-
mote I/O library, and a parameter study system. Each
tool uses different Globus services in a different way
to support a particular programming model; in each
case, availability of the Globus toolkit has allowed ex-
isting tools to be adapted for wide-area execution with
relatively little effort.

The Message Passing Interface (MPI) defines a
standard API for writing message-passing programs
and is widely used in parallel computing. For grid
applications, message passing has the advantage of
providing a higher-level view of communication than
TCP/IP sockets, while preserving for the program-
mer a high degree of control over how and when
communication occurs. Globus services have been
used to develop a grid-enabled MPI [10] based on
the MPICH library [20], with Nexus used for com-
munication, GRAM services for resource allocation,
and GSI services for authentication. The result is a
system that allows programmers to use simple, stan-
dard commands to run MPI programs in a variety of
metacomputing environments (freely combining het-
erogeneous workstation and MPP metacomputing re-
sources), while making efficient use of underlying net-
works. In future work, the developers of this system
plan to use MDS information to construct communica-
tion structures—in particular, collective operations—

that are optimized for wide-area execution.

Compositional C++ [5], or CC++, is a high-
level parallel programming language based on C++.
CC++ defines a global name space through the
use of global pointers, dynamic resource allocation,
and support for threading and remote procedure call
style communication. The Globus implementation of
CC++ uses the same services as the grid-enabled MPI,
except that while the MPI implementation relies on
Globus co-allocation services for resource allocation,
the task-parallel CC++ model interfaces to GRAM
directly.

The Remote I/O (RIO) library [16] is a tool for
achieving high-speed access from parallel programs to
files located on remote filesystems. RIO adopts the
parallel I/O interface defined by MPI-IO [7, 27] and
hence allows any program that uses MPI-IO to oper-
ate unchanged in a wide-area environment. The RIO
implementation, like that of MPI, is constructed by
using Globus services to adapt an existing system—
the ROMIO implementation of MPI-IO—to support
wide-area execution. Specifically, Nexus services are
used for communication, GSI services for authentica-
tion, and MDS services for configuration.

Nimrod-G is a wide-area version of Nimrod [1], a
tool that automates the creation and management of
large parametric experiments. Nimrod allows a user
to run a single application under a wide range of in-
put conditions and then to aggregate the results of



these different runs for interpretation. In effect, it
transforms file-based programs into interactive “meta-
applications” that invoke user programs much as we
might call subroutines. Nimrod-G uses MDS services
to locate suitable resources when a user first requests
a computational experiment, and GSI and GRAM ser-
vices to schedule jobs to resources identified by MDS
queries. In effect, Nimrod-G implements resource bro-
kering services specialized for a particular class of ap-
plication.

9 The GUSTO Testbed
Globus technologies have been deployed in

the Globus Ubiquitous Supercomputing Testbed
(GUSTO), by several measures the largest computa-
tional grid testbed ever constructed as of early 1998.
This testbed uses both dedicated OC3 and commod-
ity Internet services to link (as of early 1998) 17 sites,
330 computers, and 3600 processors, providing an ag-
gregate peak performance of 2 Tflop/s. GUSTO sites
span the continental United States, Hawaii, Sweden,
and Germany; additional sites are being added rapidly.
We discuss briefly our experiences deploying, admin-
istering, and using this testbed.

GUSTO was created during the three months prior
to the November 1997 Supercomputing conference,
held in San Jose. During this time, the first version
of the Globus toolkit was completed, deployed at 15
sites, and applied in 10 different application projects.

One lesson learned early during this effort was that
the approach of defining simple local services (and the
considerable effort put into automatic configuration
and information discovery tools) was a big win: we
were able to deploy Globus software at 15 sites with
relative ease, admittedly with considerable help from
local staff in some cases. At several sites, computer
security officers reviewed and approved our code. The
hardest part of the deployment process was typically
the development of the GRAM interface to the local
scheduler.

Once Globus was deployed, MDS and HBM proved
valuable as tools for administering a complex collec-
tion of computer systems. The standard interface pro-
vided by MDS ensured that GUSTO administrators
always had up-to-date information about the struc-
ture and state of the system at their fingertips. This
information was accessed via both an MDS browser
and various specialized Web-based tools developed to
publish specific views of the testbed.

Ten different groups developed applications for
GUSTO. One of these applications is discussed in the
next section; others included remote visualization of
scientific simulations, real-time analysis of data from

scientific instruments (meteorological satellite and X-
ray source), and distributed parameter studies. The
tools and services used by these different applications
varied tremendously, with some programming in sock-
ets and using just the bare minimum of Globus ser-
vices, and others exploiting the full range of services.

The security model used for initial GUSTO deploy-
ment was based on the plain-text GSS implementation
that we have developed. While the plain-text authen-
tication model is quite weak, it had the advantage of
avoiding export control issues. However, the need for
the stronger, public key implementation was univer-
sally expressed. An export license for this technology
is pending, and the currently deployed system will be
upgraded to this authentication mechanism once such
a license is issued.

10 Application Overview
We provide a brief description of one application

demonstrated on the initial GUSTO prototype. SF-
Express is a distributed interactive simulation (DIS)
application that harnesses multiple supercomputers
to meet the computational demands of large-scale
network-based simulation environments. A large sim-
ulation may involve many tens of thousands of entities
and requires thousands of processors. Globus services
can be used to locate, assemble, and manage those
resources. For example, in one experiment in Novem-
ber 1997, SF-Express was run on 852 processors dis-
tributed over 6 GUSTO sites. A more detailed discus-
sion of SF-Express and how Globus is being used to
support its execution across multiple supercomputers
can be found in [4]

An advantage of the Globus bag of services architec-
ture is that an application need not be entirely rewrit-
ten before it can operate in a grid environment: ser-
vices can be introduced into an application incremen-
tally, with functionality increasing at each step. As
illustrated in Table 2 and described briefly in the fol-
lowing, this approach is being followed as the original
SF-Express is converted into a grid-enabled applica-
tion.

SF-Express Startup and Configuration Prior to
the use of Globus services, simply starting SF-Express
on multiple supercomputers was a painful task. The
user had to log in to each site in turn and recall the ar-
cane commands needed to allocate resources and start
a program. This obstacle to the use of distributed re-
sources was overcome by encoding resource allocation
requests in terms of the GRAM API. GRAM and asso-
ciated GSI services are used to handle authentication,
resource allocation, and process creation at each site.



Table 2: A grid-aware version of SF-Express is being constructed incrementally: Globus services are incorporated
one by one to improve functionality and reduce application complexity. The Status field indicates code status as
of early 1998: techniques are in use (Y), are experimental or in partial use (y), or remain to be applied in the
future (blank).

Services How used Benefits Status
GRAM, GSI Start SF-Express Avoid need to log in to Y

on supercomputers and schedule each system
+ Co-allocator Distributed startup Avoid application-level Y

and management check-in and shutdown
+ MDS Use MDS information Performance, portability y

to configure computation
+ Resource broker Use broker to locate Code reuse, portability y

appropriate computers
+ Nexus Encode communication Uniformity of interface, y

as Nexus RSRs access to unreliable comms
+ HBM Components check in with Provides degree of Y

application-level monitor fault tolerance
+ GASS Use to access terrain Avoid need to prestage

database files etc. data files
+ GEM Use to generate and Avoid configuration

stage executables problems

Currently, the resources used for a simulation are
manually specified, using MDS tools to help locate,
select, and construct RSL specifications for appropri-
ate supercomputers. As illustrated in Figure 2, these
tasks can be avoided if we have access to resource
brokers that can automatically construct the required
RSL, using information such as the available network
bandwidth and CPU power to determine the number
of nodes required from the number of entities being
simulated, and the number of nodes each router can
handle. Once the resource set is identified and the
RSL specification generated, Globus co-allocation ser-
vices are employed to coordinate startup across multi-
ple supercomputers, ensuring that the application has
started on the desired resources before allowing the
simulation to proceed.

After startup, the simulation must configure itself.
In order to execute efficiently on parallel computers
that have nonuniform access to network interfaces or
secondary storage, SF-Express is organized such that
intercomputer communication and I/O activities are
performed only within specialized servers. Using infor-
mation contained in the MDS, SF-Express can config-
ure itself to place these services on appropriate nodes
within a parallel computer, that is, the node with the
attached disk or network interface card.

Finally, SF-Express must read various files describ-

ing the simulation scenario and the terrain on which
the simulation is to be performed. In the initial SF-
Express prototype, these files had to be staged man-
ually to each site at which SF-Express executed. To
simplify this task, we are migrating these file opera-
tions to use the GASS service provided in the Globus
toolkit.

Communication. The SF-Express demonstrated
at SC’97 uses MPI for communication within a sim-
ulation group, but handwritten socket code for com-
munication between routers. This approach leads to
considerable application code complexity and hinders
portability. One approach we are considering is to
rewrite the inter-supercomputer communication code
to use MPI. The grid-enabled MPI discussed in Sec-
tion 8 can then be used, eliminating the need for ap-
plication socket code.

A second approach is to rewrite SF-Express so that
communication operations are expressed directly by
using Nexus operations. SF-Express communication
operations are concerned primarily with the remote
enqueing of simulation events and, hence, are ex-
pressed more naturally as Nexus RSRs than as MPI
calls. A second benefit to using Nexus is that we
can then, as discussed in Section 4, select an unre-
liable communication protocol for the distribution of



information to routers. This usage is desirable be-
cause SF-Express, unlike many other distributed sim-
ulations, does not maintain a global simulation clock.
Instead, nodes simply discard incoming events with
timestamps earlier than the local simulation clock.
Hence, an unreliable protocol that tends to deliver
most events sooner than an equivalent reliable pro-
tocol may be preferable.

11 Related Work

The primary purpose of this paper is to report on
the current status of the Globus project rather than
to provide detailed comparisons with related work.
Hence, we provide pointers here to just a few represen-
tative efforts; the reader is referred to our other papers
listed in the references for more detailed discussion.

The Legion project [19], like Globus, is investigat-
ing issues relating to software architectures and base
technologies for grid environments. In contrast to the
Globus bag of services architecture, Legion is orga-
nized around an object-oriented model in which ev-
ery component of the system is represented by an ob-
ject [23]. In principle, Globus services can be used
to implement the Legion object model, so the two
projects are in many respects pursuing complemen-
tary goals.

Condor [25] is a high-throughput computing envi-
ronment whose goal is to deliver large amounts of com-
putational capability over long periods of time (weeks
or months), rather than peak capacity for limited time
durations (hours or days). Condor addresses the needs
of a limited, although important class of applications
whose components are loosely coupled, often orga-
nized into a task-pool style computation. Currently,
the GRAM interface to Condor enables Globus users
to submit jobs to Condor pools. We are working with
the Condor team to integrate other aspects of the sys-
tems, such as authentication.

A number of projects are attempting to build dis-
tributed computing environments on top of technolo-
gies and infrastructure developed for the World Wide
Web. These include specialized systems such as Super-
Web [3] and WebOS [30] as well as systems leveraging
basic Web technologies, such as Java Remote Method
Invocation.

SNIPE [28] is a metacomputing project that builds
on the resource management and communication fa-
cilities provided by the PVM message-passing li-
brary [17]. Like Globus, SNIPE recognizes the impor-
tance of information services and uses the Resource
Cataloging and Distribution System to provide access
to system resources and metadata.

12 Summary and Future Work

We have described the current status of the Globus
project, which seeks to develop the basic technologies
required to support the construction and use of com-
putational grids. A particular focus of the Globus
effort is the development of a small metacomputing
toolkit providing essential services that can then be
used to implement a variety of higher-level program-
ming models, tools, and applications. As we have ex-
plained in this brief review, Globus components have
been deployed in large testbeds and used to implement
a variety of applications.

We have referred above to the advantages that we
perceive in the Globus toolkit approach: in particu-
lar, the wide range of global services that can be sup-
ported, because of the decoupling of global and local
services, and the ability to construct “grid-enabled”
applications incrementally, by incorporating services
one by one and/or by taking increasing advantage
of translucent interfaces. Identification of the weak-
nesses of the approach will require the construction of
larger testbeds and further experimentation with ap-
plications. One concern is that the basic techniques
might not scale, perhaps because the local services de-
fined by the Globus toolkit are too complex for broad
deployment, or because the accuracy of the informa-
tion provided by MDS declines below a useful level.
We are investigating these issues.

We believe that the creation of large-scale testbeds
must be a central part of any computational grid
project. Hence, we are working with a variety of in-
stitutions around the world to create a permanent in-
frastructure to support experimentation with grid ap-
plications and grid software. The initial version of this
GUSTO testbed already includes resources at some 17
institutions, and we expect this number to increase.

In current work, we are investigating both grid ap-
plications and more sophisticated grid services. We
have started to investigate the construction of so-
phisticated resource brokers and robust co-allocation
strategies. We are also studying how MDS can be used
to support dynamic configuration and adaptation, so
that applications can maintain high levels of perfor-
mance in the face of dynamic changes in underly-
ing system infrastructure. Finally, we are integrating
quality of service mechanisms into the Globus frame-
work. Our initial focus is on guaranteeing communi-
cation performance. However, we will also be study-
ing how to integrate processor and memory scheduling
into this framework.

For more information on the Globus project and
toolkit, see the papers cited here and also the material



at www.globus.org.
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