
Globus Online:
Radical Simplification of Data Movement via SaaS

Bryce Allen*, John Bresnahan*, Lisa Childers*, Ian Foster*¶, Gopi Kandaswamy§, Raj Kettimuthu*,
Jack Kordas*, Mike Link*, Stuart Martin*, Karl Pickett*, Steven Tuecke*

*Computation Institute
Argonne National Lab & U. Chicago

Chicago, IL 60637, USA

¶Department of Computer Science
The University of Chicago
Chicago, IL 60637, USA

§Information Sciences Institute
University of Southern California
Marina del Rey, CA 90292, USA

ABSTRACT

We propose that research data management capabilities be delivered
to users as hosted “software as a service” (SaaS). We report on a
system, Globus Online, that adopts this approach, initially for a small
set of data movement functions. Globus Online leverages modern
Web 2.0 technologies to provide fire-and-forget file transfers,
automatic fault recovery, and high performance, while also
simplifying security configuration and requiring no client software
installation. SaaS means that new features are rapidly available, and
provides for consolidated support and troubleshooting. We describe
Globus Online’s design and implementation. We also describe a
novel approach for providing a command line interface to SaaS
without distributing client software, and Globus Connect, which
simplifies installation of a GridFTP server for use with Globus
Online. Experiments show low overhead for small transfers and high
performance for large transfers, relative to conventional tools, and
demonstrate scalability to many concurrent requests and files.

General Terms
Management, Measurement, Performance, Design, Economics,
Reliability, Experimentation, Security, Human Factors.

Keywords
Globus, Software-as-a-Service, SaaS, file transfer, data management,
cloud, grid, Globus Online

1. INTRODUCTION
As big data emerges as a force in science [5], so too do new and
onerous tasks for researchers. Data generated by specialized
instrumentation, numerical simulations, and downstream analyses
must be collected, indexed, archived, shared, replicated, and mined—
and often manipulated in many other ways besides. These tasks are
not new, but the complexities inherent in performing them for
terabyte data sets, which are increasingly common across scientific
disciplines, are quite different from those that applied when data
volumes were measured in kilobytes or megabytes. The result is a
crisis of sort in many research laboratories and a growing need for far
more powerful data management tools.

We focus in this paper on a small subset of the overall research data
management problem, namely the orchestration of data movement
among two or more locations. This task may sound trivial, but in
practice it is often tedious and difficult. Datasets may have complex
nested structures, containing many files of varying sizes. Source and
destination may have different security requirements and
authentication interfaces. Network and storage server failures must be
recovered from. Transfers must be carefully tuned to exploit high-
speed research networks. Perhaps only some files differ between
source and destination. Firewalls, Network Address Translation

(NAT), and other network complexities may need to be dealt with.
For these and other reasons, it is not unusual to hear stories of even
modest-scale wide area data transfers taking days or even weeks,
with frequent user intervention, or of being abandoned for high
bandwidth but also high latency (and frequently also labor-intensive
and error-prone) “sneakernet” [15].

Current research data movement solutions fall into three main
classes. (1) Client software allows the user to move data between
their own computer and a single remote location. Examples are
secure copy (scp) and rsync, both of which provide ease of use and
access to most facilities, but often only modest performance, and
leave fault recovery to users. In effect, these systems are a lowest
common denominator. (2) Third-party systems allow for the
movement of data among two or more remote sites. Examples
include globus-url-copy, Reliable File Transfer (RFT) [16], CERN’s
File Transfer Service (FTS), and LIGO’s Data Replicator (LDR) [7].
These systems’ support for third-party transfer is valuable for many
users, and they often have better performance and fault behaviors
than client systems, but the need to install and operate complex
software can be a barrier to use. They are also often custom to
specific data types and network configurations, and so can only be
used by specific communities. (3) Hosted approaches introduce an
intermediate system to which data is copied for subsequent download
by its intended recipient(s). This approach, exemplified by systems
such as email, Dropbox and YouSendIt, provides simplicity and a
degree of delivery guarantee, but is not suitable for the extremely
large datasets that are common in science.

Globus Online (GO) adopts a hybrid of the third-party and hosted
approaches. It implements management functionality similar to (but
more sophisticated than) that provided by systems such as RFT, FTS,
and LDR, but delivers this functionality not as downloadable
software but as hosted “software as a service” (SaaS). It is a cloud-
hosted, managed service, meaning that you ask it to move data; it
does its best to make that happen, and tells you if it fails.

SaaS allows GO to exploit economies of scale, as a single hosted
service serves many individuals and communities. SaaS means that
new features are immediately available to users, and allows experts to
intervene and troubleshoot on the user’s behalf to deal with more
complex faults. It leverages widely available resource access services
(e.g., GridFTP, and in the future HTTP) to integrate with storage
resources, and operates across multiple security domains and
technologies, so that it can be used across a wide range of facilities.
GO’s support for GridFTP delivers the benefits of grid technology,
including support for heterogeneity and local control of access
control and resource allocation policies at individual endpoints [14].

GO further leverages modern Web 2.0 technologies to provide
extreme ease of use while requiring no client software installation. It

can be accessed via different interfaces depending on the user and
their application. A simple Web GUI serves the needs of ad hoc and
less technical users. A command line interface via ssh exposes more
advanced capabilities and enables scripting for use in automated
workflows. A REST application programming interface (API)
facilitates integration for system builders who do not want to re-
engineer file transfer solutions for their end users; this REST
interface also supports the GO Web interface.

The Web GUI allows a client to establish and update a user profile,
and to specify desired authentication method(s). All access methods
enable the client to specify the method(s) to be used to authenticate to
the facilities to/from which data will be transferred; authenticate
using various common methods, such as username and password,
Google OpenID, OAuth [16], Shibboleth [13], or MyProxy [21]
providers; characterize endpoints to/from which transfers may be
performed; request transfers; monitor transfer progress; get detailed
information about the transfer; and cancel active transfers. Having
authenticated and requested a transfer, a client can disconnect, and
return later to find out what happened. GO tells you which transfer(s)
succeeded and which, if any, failed. It notifies you when a transfer
completes, or if a critical fault has occurred such as a deadline not
met, or a transfer requires additional credentials to proceed. In
addition, GO can handle transfers across multiple security domains
with multiple user identities.

We describe the GO design and its implementation, which leverages
Amazon Web Services (AWS) infrastructure-as-a-service (“cloud”)
resources for reliability and scalability. We also report on
experiments designed to evaluate the performance, scalability, and
cost of the system. These experiments show that overhead for small
transfers is modest relative to client-side tools and that performance
for large transfers is usually not only far better than that of scp, but
also significantly better than that achieved with out-of-the-box
configurations of the widely used globus-url-copy, due to GO’s
ability to automatically tune transfers for high performance. We also
demonstrate scalability to many concurrent requests and files.

This work is part of a project that aims to deliver research data
management functionality as hosted “software as a service” (SaaS),
rather than downloadable software that must be installed and
operated by the user. In this way, we believe, we will be able to
exploit economies of scale and the benefits of expert management for
many individuals and communities, while alleviating research users
of the burden of installing and operating complex software.

We believe that this paper makes two useful contributions to our
understanding of research data management. First, we describe and
evaluates an innovative new data management solution: the GO
SaaS-based data movement service, which has its roots in “Grid”
techniques but goes far beyond traditional Grid approaches. Second,
we make the case for the use of SaaS methods for research data
management more generally, arguing for the advantages of thus
making sophisticated capabilities available to all researchers and
facilities, in an easy-to-use and cost-effective manner.

2. REQUIREMENTS & RELATED WORK
We first define our problem and review previous approaches.

2.1 General Problem Statement
Our broad interest is in accelerating discovery by outsourcing
challenging research management problems—that is, delivering
sophisticated functionality to researchers in a manner that minimizes
their IT burden and cost. The focus of the work presented here is on
the specific problem of file transfer. Our target users need to copy a
number of files, with potentially large aggregate size, among two or
more network-connected locations (“endpoints”)—reliably, rapidly,

securely, and easily. These endpoints may or may not include the
computer from which the data movement command is issued: in other
words, third-party transfers may be (and indeed frequently are)
involved. Our goal is a solution that provides extreme ease-of-use
without compromising reliability, speed, or security.

A 2008 report [9] makes clear the importance of usability. In
particular, failure recovery has often been a human-intensive process:

“The tools that we use to move files typically are the standard Unix
tools included with ssh. And for that we don’t need more
information—it’s just painful. Painful in the sense of having to
manage the transfers by hand, restarting transfers when they
fail—all of this is done by hand. Then of course there are the
hardware problems: dealing with the sluggishness on some of the
networks like the ESNet, which we’ve had some problems with
recently. The file transmission rates are painfully slow, errors
occur and then we have to retransmit.”

The same user bemoans the need to determine manually which
transfers have succeeded and, perhaps more importantly, failed:

“If I have a list of a few hundred files, and I want to get from point
A to point B, and I start the process and something happens (it
breaks or dies in the middle) I have to retransmit. But I don’t
want to retransmit all of it. The process of sorting through which
one succeeded and which ones did not, and restarting. It’s a time-
consuming and annoying process and is something that slows
down work.”

One approach to data movement involves running tools on the user’s
computer. For example, rsync [26], scp, FTP, SFTP, and bbftp [17]
are often used to move data between a client computer and a remote
location. Other software, such as globus-url-copy, RFT [19], FTS,
and LDR, can manage many transfers. However, the need to
download, install, and run software is a significant barrier to use.
Users spend much time installing, configuring, operating, and
updating such tools, particularly when dealing with large data
volumes, many files, high-speed networks, and/or frequent failures.
Additionally, users rarely have the IT and networking knowledge
necessary to fix things when it does not “just work”, which as
suggested by the user quoted above happens all too often.

Various big science projects have developed specialized solutions to
this problem. For example, PhEDEx [23] manages data movement
among sites participating in the CMS experiment, and LIGO
developed the LIGO Data Replicator [8]. These centrally managed
systems allow users to hand off data movement tasks to a third party
that performs them on their behalf. However, these services require
professional operators and only operate amongst carefully controlled
endpoints within those communities: they cannot easily be installed,
operated, or used by a smaller project amongst its endpoints.

Managed services such as YouSendIt and DropBox also provide data
management solutions, but do not address our target users’ need for
high-performance movement of large quantities of data. BitTorrent
[11] and Content Distribution Networks [28] such as Akamai, are
good for distributing a relatively stable set of large files (e.g.,
movies), but do not address our target users’ need for many,
frequently updated files managed in directory hierarchies. Storage
Resource Broker (SRB [4]) and its iRODS [22] successor are storage
managers that are often run in hosted configurations. However, while
these systems can perform some data transfer operations (e.g., for
data import), data transfer is not their primary function or focus.

Kangaroo [25], Stork [18], and CATCH [20] manage data movement
over wide area networks, using intermediate storage systems where
appropriate to optimize end-to-end reliability and/or performance.

These systems are not intended as SaaS data movement solutions, but
we could incorporate their methods within GO.

2.2 More Detailed User Requirements
Limited space does not permit a comprehensive presentation of user
requirements, but we point out some important issues identified
during our use case development process.

We assume for now that data is accessible via FTP or GridFTP [1],
though as we describe below our Globus Connect agent makes it easy
to make data accessible from other resources including end-user
laptops, desktops and servers. (Support for HTTP, WebDAV, SRM
[24], and other access methods is planned for the future.) Different
endpoints may require different security credentials and
configurations. Some may have firewalls that prevent incoming
connections. The networks over which transfers are to be performed
may vary greatly in their performance and reliability. Nevertheless,
users desire fire-and-forget data transfer capabilities.

We find it useful to distinguish among multiple user types. Ad-hoc
users perform mostly one-off transfers, as opposed to performing
similar transfers repeatedly. They want to move data in the same way
as they perform other tasks on their computer: via a convenient and
easy graphical user interface. For them, a Web interface is essential.

Script writers create automated workflows to assist with their work:
for example, a script that, each evening, transfers new files created
during the day’s work to a remote repository, or which automatically
moves output from an analysis job back to their local machine. For
them, a command line interface (CLI) is often desirable, as it allows
such workflows to be specified using shell scripts or other simple
solutions. One challenge to which we describe a solution below is
how to deliver a CLI to users without violating the Software-as-a-
Service tenant of no client software installation.

Finally, systems builders develop or adapt domain-specific tools for
various communities, such that the file transfer is integrated into a
larger system. A REST API is desirable, to facilitate integration
without requiring re-engineering of the file transfer solutions that
they deliver to end-users. System builders often want to customize
the user experience, so that their users experience a consistent look
and feel, even when they are interacting directly with GO.

Web and REST interfaces to centrally operated services have become
conventional in business, where it underpins services such as
Salesforce.com (customer relationship management), Google Docs,
Facebook, and Twitter. It is not yet common in science. Two
exceptions are PhEDEx Data Service [12], which provides both
REST and CLI interfaces to CMS data operations, and the NERSC
Web Toolkit (NEWT) [10], which enables RESTful operations
against HPC center resources.

3. DESIGN AND IMPLEMENTATION
We present the system design from the perspective of the user and
also describe important elements of its implementation.

3.1 Architecture Overview
As illustrated in Figure 1, GO comprises one or more user gateway
servers, which support interaction between users and the system via
the Web GUI, CLI and REST interfaces; one or more workers, which
orchestrate data transfers and perform other tasks, such as notify
users of changes in state; and a profiles and state database for user
profiles, request state, and endpoint information. Web, command-
line, and REST interfaces provide similar capabilities, although not
all functionality is available through the Web GUI as of June 2011.

Figure 1: Schematic of the Globus Online architecture
The REST interface uses HTTP GET, PUT, POST, and DELETE
operations against a defined set of URLs representing GO resources.
Thus, to create a transfer task, we issue a POST to
https://transfer.api.globusonline.org/v0.10/transfer
with a document describing the transfer request (source and
destination endpoints and file paths, options, etc.). To access the
status of a task with a specified <task_id>, we issue a GET request to
https://transfer.api.globusonline.org/v0.10/task/<ta
sk_id>; a document is returned with the status information. The
REST interface is versioned, so GO can evolve its REST interface
without breaking existing clients. Documents passed to and from
HTTP requests can be formatted using JSON or XML. Supported
security mechanisms include HTTPS mutual authentication with an
X.509 client certificate, and HTTPS server authentication with
cookie-based client authentication (for Web browsers).

The GO Web interface builds on the REST interface, using standard
AJAX techniques. A GO Web page contains standard HTML, CSS,
and Javascript, and interacts with the REST interface using standard
session cookie-based client authentication. The Web GUI supports
browsing remote file systems, and submitting, monitoring, and
cancelling transfer requests.

A command line interface (CLI) supports client-side scripting.
However, a CLI typically requires installation of client-side libraries,
which is counter to a key SaaS tenet of not requiring client software
installation to use the service. To provide SaaS CLI, GO has
employed a novel “CLI 2.0” approach that eliminates the need to
install client software (for those machines already configured with
ssh). It provides all GO users with a restricted shell, to which any
user can ssh to execute commands. Thus, I can write

 ssh ian@cli.globusonline.org \
 scp alcf#dtn:~/myfile nersc#dtn:~/myfile

to copy myfile from source alcf#dtn to destination nersc#dtn. The
boldface text invokes the GO scp command, which mirrors the syntax
of the popular scp. It supports many regular scp options, plus some
additional features—and is much faster because it invokes GridFTP
transfers. Alternatively, I can first ssh to cli.globusonline.org and
then issue a series of commands directly:

ian$ ssh cli.globusonline.org
Welcome to globusonline.org, ian.
$ scp alcf#dtn:~/myfile nersc#dtn:~/myfile
Contacting 'gs1.intrepid.alcf.anl.gov'...
Enter MyProxy pass phrase: ********

This example also illustrates how endpoints can define logical names
for physical nodes. For example, alcf#dtn denotes the data transfer
nodes running GridFTP servers at the Argonne Leadership
Computing Facility. Sites can define and publish their own endpoint
definitions (e.g., alcf#dtn, nersc#drn); users have the ability to define
custom endpoint definitions as well (e.g., mylaptop, myserver).

WorkerWorkerWorker
Request
collectorUser
gateway

Profiles & state

GridFTP
server

GridFTP
server

Notification
target

User

User

User

User

Notification
target

Table 1 lists the primary transfer management functions supported by
the GO interfaces. Additional endpoint management functions
provides for the creation, deletion, configuration, activation, and
deactivation of logical endpoints. Other functions support
administrative tasks, such as listing available commands, reviewing
command history, and obtaining command help.

GO maintains a database of active transfer requests (“tasks”) and, for
each task, its current state. The state transition diagram associated
with a task is simple. A request is submitted and (subject to limits on
the number of active requests allow for one user at one time)
becomes active. The task then remains active until it is suspended
because of an expired credential; completes successfully because all
files in the task have completed; or fails, either due to the deadline
defined with the task being reached, or the user cancelling the
transfer. When executing a task, GO attempts to execute each file
transfer in turn; multiple concurrent transfers may be used to improve
performance when dealing with small files. If a transfer fails, GO will
keep attempting it periodically until either the task deadline is
reached or the user cancels the request.

3.2 User Profile and Identity Management
An important feature of GO is its ability to handle transfers across
multiple security domains with multiple user identities. Unlike most
other systems, including most previous Grid file transfer services,
GO does not require the use of a single, common security credential
across all endpoints involved in a transfer. Rather, GO assumes from
the start that users have many identities for use with many different
service providers, and that it is GO’s job to make sure that the right
identities are brought to bear at the right time for any transfer; and to
do so in a way that is easy for users to understand and use.

Table 1: Principal Globus Online data transfer commands

Class Name Description

C
re

at
e

tra
ns

fe
r

ls List files and directories on an endpoint.
transfer Request data transfer of one or more files or

directories between endpoints; supports
recursive directory transfer and rsync-like
synchronization.

scp Request data transfer of a single file or
directory; syntax and semantics based on
secure copy utility, to facilitate application
porting

M
on

ito
r t

ra
ns

fe
rs

status List transfers initiated by requesting user,
along with summary information such as
status, start time, completion time, etc.

details Provide details on a transfer, such as number
of file transferred, number of faults, etc.

events List events associated with a specified transfer
(start, stop, performance, faults)

 C
on

tro
l

tra
ns

fe
rs

cancel Terminate the specified transfer or individual
file in a transfer

wait Wait for the specified transfer to complete;
shows a progress bar

modify Alter the deadline for a transfer

To this end, each GO user has a GO account, in which that user can
easily configure their profile with their various identities. For
example, a user can easily add to their profile their MyProxy CA [21]
identities (e.g., for NERSC, ALCF, and other computing centers that
use this approach), OAuth [16] identities (e.g., for TeraGrid or
Facebook), OpenID identities (e.g., for Google), Shibboleth [13]
identities (e.g., for campus credentials), and X.509 identities (e.g.,
from DOE Grids CA or another IGTF-certified CA).

While GO can store identities, it does not store passwords. Rather, it
know just the identity and how to use it, so that it can prompt the user
with the appropriate information when that identity is needed. In
addition, some or all identities can be configured as “federated
identities” that the user can use to authenticate with GO. For
example, if I have already authenticated my browser session with an
OpenID, OAuth, or Shibboleth identity, I can use the GO Web site
without having to authenticate further; X.509 (proxy) identities can
be used to authenticate with the GO Web site, CLI, and REST API.

GO keeps track of what security credentials are required by the
different endpoints with which a user may wish to communicate.
Then, where possible, it caches information that it can use to
facilitate access. For example, assume that user U must provide
X.509 credential U-A to access endpoint A, and X.509 credential U-
B to access endpoints B1 and B2. In order for GO to perform a file
transfer from A to B1 as requested by the user, GO requires short-
term (typically 12 hour) X.509 proxy credentials [27] that it can use
to authenticate the user request to the GridFTP servers running at
endpoints A and B1. If GO does not have such credentials, it will
prompt the user for them when the user requests the transfer. For
example, if endpoints A and B1 each use their own MyProxy CA
servers, GO will prompt the user for their site logins at each endpoint,
in order to retrieve the necessary X.509 proxy credentials from the
MyProxy CA server. Alternatively, a user (or script) can proactively
push X.509 proxy credentials to GO for use with specific endpoints.

Once GO has needed credentials it can proceed with the transfer. GO
will then cache those credentials until they expire or are explicitly
deleted by the user. If user U subsequently requests another transfer
that requires existing credentials (e.g., AB1), GO will use these
cached credentials. GO will also use the same user proxy credential
for endpoints that have the same default MyProxy server, so a user
does not have to enter the same password multiple times. For
example, it will recognize that it already has U-B from the first
transfer to B1, and that this same credential can be used with B2. Of
course, each user has a distinct credential cache. If a credential
expires before the transfer completes, GO will notify the user via
email (and SMS, Instant Messenger, and Twitter in the future) that
the user need to re-authenticate to get a fresh credential. Until such
time as the credential is renewed, the transfer will be suspended.

3.3 A Scalable Cloud-based Implementation
Successful SaaS requires reliability and scalability: the service must
continue operating despite the failure of individual system
components, and behave appropriately as usage grows. To this end,
we apply methods commonly used by SaaS providers. We run GO on
Amazon Web Services. User and transfer profile information are
maintained in a database that is replicated, for reliability, across
multiple geographical regions. Transfers are serviced by nodes in
Amazon’s Elastic Compute Cloud (EC2), which makes it possible to
scale the number of servers used to manage data transfers as service
demands increase. User gateways are also run across multiple
servers, with load balancing, to achieve reliability and scalability. All
of this infrastructure runs within Amazon Security Groups, so that
only appropriate HTTP and SSH ports are exposed to the Internet.

GO workers initially used the globus-url-copy client program to
manage transfers. However, globus-url-copy is a complex program
comprising more than 40,000 lines of code with many features not
needed by GO, and that furthermore does not include important
optimizations and fault handling that are possible in the hosted GO
context. Thus, we developed fxp, a simple GridFTP client that uses
the same Globus control channel library that underlies globus-url-
copy, but with GO-specific optimizations. For example, when fxp
gets a transfer request consisting of multiple source-destination URL
pairs, it knows that all source URLs correspond to a single logical

source endpoint and all destination URLs correspond to a single
logical destination endpoint. Thus, it can do better load balancing.
Fxp also provides good error attributions, and improves on globus-
url-copy’s pipelining performance for many small files.

3.4 Globus Connect
The GO user need not install software to request transfers between
remote GridFTP servers. However, software installation is required if
a source or destination computer does not have GridFTP installed: for
example, when transferring data to/from a user’s computer.

To address this need, we introduce Globus Connect, a one-click
download-and-install application for MacOS, Linux, and Windows.
In brief, Globus Connect comprises a GridFTP server that runs as the
user (rather than root from inetd like a typical GridFTP server), and a
GSI-OpenSSH client configured to establish an authenticated
connection to a GO relay server, so as to tunnel GridFTP control
channel requests from GO. This Globus Connect GridFTP server
only uses outbound data channel connections. GO can direct transfer
requests to/from a Globus Connect instance via the control channel
tunnel. Thus, to request a data transfer to/from the computer on
which they have installed Globus Connect, the user interacts with GO
just as they would to request any other transfer (Figure 2). GO relays
the request via the tunnel to the Globus Connect server, which then
engages in the transfer. This approach has several advantages. First,
the Globus Connect server only establishes outbound connections and
thus can work behind a firewall or other network interface device that
does not allow for inbound connections. Second, the Globus Connect
server is stateless and thus can be started and stopped at will: all state
associated with transfers is maintained by GO.

Figure 2: A schematic of the Globus Connect architecture
Note that Globus Connect does not currently allow for transfers
between two Globus Connect endpoints, as both would attempt to
establish an outgoing connection to the other. We expect to introduce
support for Globus Connect-to-Globus Connect transfers, for
example via the use of intermediate data channel relay servers.

3.5 Globus Connect Security Configuration
Globus Connect also incorporates user-friendly methods for
automating security configuration. GridFTP’s use of public key
authentication protocols means that each GridFTP server must
possess an X.509 certificate issued by a certificate authority (CA),
which the client (in our case, a GO worker) uses to verify that it is
talking to the correct GridFTP server. Thus, to configure a
conventional GridFTP server, a user must either obtain an X.509
certificate from a well-known certificate authority (CA)—or,
alternatively, set up their own CA and issue a certificate, which they
must then ensure is accepted by other sites. Likewise, the client must
possess an X.509 certificate issued by a CA that is trusted by the
GridFTP server. In addition, in order to access the files on a GridFTP
server, the subject of the user’s X.509 certificate must be mapped to a
local user account. These tasks can be much more tedious than
building/installing the GridFTP software.

We overcome these problems in two ways. First, we automate the
process of generating, installing, and configuring the certificate
required for a Globus Connect installation. We use an online, private
CA incorporated in GO to generate a new service certificate when a
user adds a Globus Connect endpoint. The user copies a secret “Setup
Key” from the GO web site to the Globus Connect setup window in
order to securely pair it to their new endpoint definition. Globus
Connect uses the setup key as a one-time-use token to download the
certificate, private key, and GridFTP gridmap configuration over a
secure GSI-OpenSSH connection. GO can then authenticate to the
Globus Connect and be sure it is talking to the correct one.

Further problems relating to data channel authentication (DCAU) can
arise when a user requests a transfer involving the Globus Connect
endpoint. The GridFTP protocol [2] defines DCAU for a third-party
transfer to involve mutual validation of the X.509 credentials that the
requesting user provides to the two endpoints involved in the transfer.
Thus, if endpoint A requires that the user supply a credential A (e.g.,
an X.509 proxy certificate issued by CA-A) and endpoint B requires
that the user supply a credential B (e.g., an X.509 proxy certificate
issued by CA-B), then endpoint A must, as part of data channel setup,
receive and validate credential B, and endpoint B must receive and
validate credential A. However, this process fails if CA-A is
unknown to endpoint B, or vice versa: see the upper part of Figure 3.

Figure 3: Above: the data channel authentication problem.
Below: using DCSC to overcome the problem.
This problem is not unique to Globus Connect, but is particularly
likely to arise when using Globus Connect because Globus Connect
endpoints use credentials from the GO private CA, which few other
sites trust. In order to address this limitation, we introduced a new
Data Channel Security Context (DCSC) command in GridFTP. A
GridFTP client (e.g., GO) can use this command to tell a DCSC-
enabled GridFTP endpoint to both accept and present to the other
endpoint a different credential than was used to authenticate the
control channel. For example (see Figure 3, below), it can use DCSC
to pass credential A to site B, for subsequent presentation to site A.
Note that this command enables DCAU even if one endpoint is a
legacy GridFTP server that knows nothing about DCSC.

4. EXPERIMENTAL EVALUATION
We summarize studies of GO performance and scalability.

Globus
Connect

"MyDesktop"

GridFTP
server
"SiteA"

 Globus
 OnlineUser (1) Globus Connect

client registers with
Globus Online

(2) User makes request
to Globus Online: e.g.,"transfer
data from MyDesktop to SiteA"

(3) Globus Online
forwards requests
to Globus Connect

(4) Globus Connect establishes data channel
connection to SiteA and transfers data

4.1 Request dispatch overhead
We first evaluate the costs associated with dispatching requests to a
hosted service rather than executing them directly on the user’s
computer. We may expect that this dispatch will introduce some
overhead, due to need to communicate the request to the GO user
gateway that is operating on a remote computer. The GO
implementation has been designed and implemented to minimize
these costs, but we are still concerned to evaluate them.

We issued 100 consecutive requests to transfer a one-byte file
between two locations, using first scp and then GO scp dispatched to
GO via SSH. We measured total times of 93 and 273 seconds,
respectively—an average per-request cost of 0.93 seconds for SCP
and 2.73 seconds for GO scp. Thus, we conclude that the request set
up cost associated with the use of GO is ~1.8 seconds. We view this
overhead as acceptable. Note that if a user wants to request many
transfers, they will normally do this with a single request. If a user
wants to perform many consecutive small requests, then they may
choose to log into the GO CLI gateway and issue the commands
directly, and thus avoid the per-request SSH cost.

4.2 Concurrent request overheads
We may also be concerned that if GO is overloaded, the time
required to respond to a request may increase. Thus, we measure
transfer time as a function of the number of requests that a single
EC2 instance is processing. For these experiments, all transfers are
performed entirely between GridFTP servers hosted in the Amazon
cloud, so that we can easily scale up and down the number of “users”
that generate requests concurrently to a user gateway server.

Figure 4 shows the mean transfer rate (in bytes/sec) achieved when
GO is processing between 1 and 63 requests at the same time, where
each request involves many transfers of the same size, ranging from
0.001 MByte to 1000 MB. In this experiment, all transfer
management operations occur within a single Amazon EC2 c1.xlarge
instance, which has eight virtual cores and 7 GB of memory; this
demonstrates the scalability of a single instance, though GO can scale
larger by using multiple instances to handle the requests. Transfers
are between GridFTP endpoints instantiated on different EC2 servers
within different Availability Zones in the same Region. (From
aws.amazon.com/ec2: “Availability Zones are distinct locations that
are engineered to be insulated from failures in other Availability
Zones and provide inexpensive, low latency network connectivity to
other Availability Zones in the same Region.” We map transfer
endpoints to Availability Zones within the same region to
approximate data transfer within a single campus.)

We see that, as expected, average transfer rate is lower for smaller
files. Furthermore, there is a decline in transfer rate as the number of
concurrent users increases. However, this decline is modest except
for small files. This result makes sense, as transferring smaller files
put a larger load on GO than larger files, due to the increased
GridFTP control channel traffic, and the resultant increased load on
the GO database that tracks the transfer progress.

4.3 Data transfer performance
We next evaluate performance when transferring large quantities of
data between pairs of endpoints. To evaluate GO’s performance
optimization logic in practical situations, we compare GO
performance with that achieved when using scp and the globus-url-
copy (GUC) client. As scp is known to perform badly, particularly
over wide area networks, we include it primarily as a sanity check: if
GO is not better than scp, then something is wrong. GUC, on the
other hand, drives GridFTP transfers, and so is a fairer comparison.
However, in its default configuration (which many people use
unchanged) it does not employ optimizations used by GO. For
example, it does not enable concurrency, parallelism, pipelining, or

data channel caching. Thus this comparison allows us to evaluate the
performance gains that many users can expect to gain from GO. We
also compare GO against GUC with parameters hand tuned by an
expert to maximize performance: “tuned-guc” in the results.

Figure 4: Average transfer performance as a function of number
of concurrent requests, for different files sizes
We present results in Figure 5 over a high-speed wide area network
(ESNet) between two high-performance parallel storage systems, and
Figure 6 between local instance storage of two EC2 instances within
different Amazon Availability Zones within a single Region, to
approximate a transfer over a campus network. In Figure 5, we give
results both between a single data transfer node (DTN) at ALCF and
NERSC (“go-single-ep”), and (the default configuration) using the
two DTNs that are supported by ALCF and NERSC (“go”). Each
DTN is a fast server with a 10 Gb/s network to ESnet, and a fast local
connect to each site’s GPFS parallel file system.

Figure 5: Data transfer performance between ALCF and NERSC
Scp performs badly in all cases. GUC with its default configuration
performs badly for all sizes over the wide area, and for small files in
the local area. (Clearly, the default configuration requires
improvements.) Tuned-guc performs better than GUC in almost all
cases. In the wide area case, it does less well than GO for smaller
files—probably because GO drives GridFTP pipelining more
aggressively, due to the improved pipelining support in GO’s fxp
GridFTP client. Tuned-guc does better than GO for large files; there
remain opportunities to tune GO performance further. Note that the
GO transfers to a two DTNs vs. a single DTN are not substantially
different except for the largest transfer. We conclude the bottleneck is
not the DTNs, but rather either the network or local storage.

5. EXPERIENCES
We assess early user, operator, and site experiences with GO.

5.1 User Experiences
Account creation and new user training requests initially made up the
bulk of GO support mail. As account management functions were
automated and documentation matured, such requests
declined. Current emails are mostly feature requests, problem reports
for new code (e.g., Globus Connect,) and endpoint-related problems
(e.g., firewall troubles, GridFTP configuration issues). GO staff
work with network engineers and system administrators around the
world to help fix their problems.

Figure 6: Data transfer performance between two EC2 instances
Though inevitably anecdotal, initial feedback from the GO user
community has been positive. We briefly describe one ad hoc
interaction and two domain-specific projects. The ad hoc example
involved a 300,000 file, 586-terabyte transfer from Argonne, half to
the Oak Ridge Leadership Computing Facility (OLCF) and half to
NERSC. In Figure 7, the X-axis gives the file numbers, ordered by
completion time, and the Y-axis the completion time. During a first
phase, extending until the dashed vertical line, transfers proceeded to
both remote sites, with a total average transfer speed of 5.7
gigabit/sec. At the dashed line, all transfers to NERSC had
completed, and all subsequent transfers are to OLCF.

The extended pause was due to an error relating to Amazon not
correctly handling reverse DNS for OLCF hosts. (Sites other than
OLCF resolved correctly inside Amazon; non-Amazon sites found
OLCF hosts.) GO operators could not pinpoint the source of the
problem, and thus installed a workaround that enabled the GO server
to resolve the OLCF hosts. Eventually, reverse DNS started working
properly for OLCF hosts within Amazon, allowing the OLCF-
specific workaround to be removed by the GO administrators. OLCF
administrators speculate that these errors occurred because DNS
servers used by Amazon had bad data cached after ORNL made some
DNS changes, and that it took time for those caches to update.

GO administrators took several days to correct the DNS lookup
problem because it took the various system administrators time to
understand the details. GO operators provided OLCF system
administrators with additional data from internal tests, but in the end
the group could not pinpoint the problem. Once the workaround was
deployed the transfers resumed immediately.
The Earth System Grid (ESG) [6] community has integrated GO into
its gateway nodes. GO has also been integrated, in less than half a
day, into a testbed version of the LIGO [3] ARchival Service

(LARS). A LIGO user with a LARS identifier and some metadata
about analysis files can click a button that submits a transfer job to
cli.globusonline.org via GSISSH to have the files replicated to
LIGO’s archival space. In both cases, use of GO provides users with
higher performance and eliminates the need for the application
system to monitor data movement and manage fault recovery.

Figure 7: Log for 586 TB transfer (see text for details)

5.2 Globus Online Operator Experiences
The GO team provides professional systems administration,
operation, and help desk. All GO servers are monitored using Nagios,
which allows us to respond quickly to failures. Our most commonly
observed failure (several times in the past three months) is loss of an
Amazon EC2 instance running one or more GO components. This
failure has occurred far more often than we expected, indicating that
we must make improvements to GO’s automatic fail-over capabilities
to ensure that the service continues to operate through these node
crashes without human intervention or user impact.

The SaaS approach also facilitates troubleshooting. For example, one
user employed GO to move data to 11 sites. All completed
successfully, but monitoring showed that three sites had high transfer
retry rates—more than 50 retries per file in one case. Investigation
revealed misconfigured systems that had gone unnoticed for months.
We worked with the site admins to get them fixed within days.

5.3 Site Operator Experiences
A third important class of GO participants are the sites that host
endpoints involved in data transfers. We have seen positive responses
from both high performance computing centers (e.g., DOE
supercomputer centers, TeraGrid [7] sites) and operators of other
major facilities such as DOE light sources—two groups that have a
strong interest in providing their users with reliable, secure, and
performance data movement services. NERSC (the National Energy
Research Scientific Computing Center) at Lawrence Berkeley
National Laboratory has adopted GO as a recommended method for
its 4000+ users to transfer files to and from NERSC.

6. CONCLUSIONS AND NEXT STEPS
The Globus Online (GO) hosted data movement service leverages
software-as-a-service (SaaS) methods to provide fire-and-forget file

transfer, automatic fault recovery, and high performance, and to
simplify the use of multiple security domains while requiring no
client software installation to submit and monitor requests. Globus
Connect provides for easy installation of a GridFTP server on a
user’s machine, so that it can participate in GO transfers. The result is
a system that provides automatic fault recovery, high performance,
and easy-to-use security, to virtually all researchers and facilities.

Experimental studies show that GO can achieve excellent
performance in a wide variety of settings, with low per-transfer
overhead and overall bandwidth better than the popular globus-url-
copy tool in its default configuration, and only exceeded by a human-
tuned globus-url-copy in a few large-file settings. Feedback from
users and sites is also positive. For example, the NERSC
supercomputer center recommends GO to its users for moving data in
and out of NERSC storage systems.

We continue to refine GO to further improve ease of use and to
support other protocols and other data-related functions. Recognizing
that a frequent reason for moving data is to share it with others, we
are adding data sharing. To simplify the specification of sharing
policies, we are integrating group management. These mechanisms
provide in turn a foundation on which can be built a range of other
capabilities such as support for collaborative tools.

7. ACKNOWLEDGMENTS
We thank Vijay Anand, Rachana Ananthakrishnan, Joshua Boverhof,
Kyle Chard, Ann Chervenak, Paul Dave’, Martin Feller, Daniel
Gunter, Thomas Howe, Lukasz Lacinski, Steven Link, Ravi Madduri,
Daniel Morgan, Michael Russell, Eugene Sadhu, Mei-Hui Su, Vas
Vasiliadis, Vanamala Venkataswamy, and Andrew Zich for work on
Globus Online design, implementation and testing, and to many users
for helpful suggestions (and encouragement). This work is supported
by U.S. Department of Energy, Contract No. DE-AC02-06CH11357;
National Science Foundation, contract OCI-534113; and National
Institutes of Health, NCRR grant 1 U24 RR025736-01.
8. REFERENCES
1. Allcock, B., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu,

C., Raicu, I. and Foster, I., The Globus Striped GridFTP
Framework and Server. SC'2005, 2005.

2. Allcock, W. GridFTP: Protocol Extensions to FTP for the Grid.
GFD-R-P.020, Global Grid Forum, 2003.

3. Barish, B.C. and Weiss, R. LIGO and the Detection of
Gravitational Waves. Physics Today, 52(10):44, 1999.

4. Baru, C., Moore, R., Rajasekar, A. and Wan, M., The SDSC
Storage Resource Broker. 8th Annual IBM Centers for Advanced
Studies Conference, Toronto, Canada, 1998.

5. Bell, G., Hey, T. and Szalay, A. Beyond the Data Deluge.
Science, 323(5919):1297-1298, 2009.

6. Bernholdt, D., Bharathi, S., Brown, D., Chanchio, K., Chen, M.,
Chervenak, A., Cinquini, L., Drach, B., Foster, I., Fox, P., Garcia,
J., Kesselman, C., Markel, R., Middleton, D., Nefedova, V.,
Pouchard, L., Shoshani, A., Sim, A., Strand, G. and Williams, D.
The Earth System Grid: Supporting the Next Generation of
Climate Modeling Research. Proceedings of the IEEE, 93(3):485-
495, 2005.

7. Catlett, C. and others. TeraGrid: Analysis of Organization,
System Architecture, and Middleware Enabling New Types of
Applications. High Performance Computing and Grids in Action,
2007.

8. Chervenak, A., Schuler, R., Kesselman, C., Koranda, S. and Moe,
B., Wide Area Data Replication for Scientific Collaborations. 6th
IEEE/ACM Int'l Workshop on Grid Computing 2005.

9. Childers, L., Liming, L. and Foster, I. Perspectives on Distributed
Computing: Thirty People, Four User Types, and the Distributed

Computing User Experience. Argonne National Laboratory
Technical Report ANL/MCS/CI-31, 2008.

10. Cholia, S., Skinner, D. and Boverhof, J., NEWT: A RESTful service
for building High Performance Computing web applications.
Gateway Computing Environments Workshop, 2010, 1-11.

11. Cohen, B. Incentives Build Robustness in BitTorrent,
http://bittorrent.com/bittorrentecon.pdf, 2003.

12. Egeland, R., Wildishb, T. and Huang, C.-H. PhEDEx Data Service.
Journal of Physics: Conference Series, 219(062010), 2010.

13. Erdos, M. and Cantor, S. Shibboleth Architecture. Internet 2,
http://shibboleth.internet2.edu/docs/draft-internet2-shibboleth-arch-
v05.pdf, 2002.

14. Foster, I., Kesselman, C. and Tuecke, S. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. International Journal of
Supercomputer Applications, 15(3):200-222, 2001.

15. Gray, J., Chong, W., Barclay, T., Szalay, A. and Vandenberg, J.
TeraScale SneakerNet: Using Inexpensive Disks for Backup,
Archiving, and Data Exchange. Technical report MSR-TR-2002-54,
2002.

16. Hammer-Lahav, E. The OAuth 1.0 Protocol. Internet Engineering
Task Force (IETF) RFC 5849, 2010.

17. Hanushevsky, A., Trunov, A. and Cottrell, L., Peer-to-Peer
Computing for Secure High Performance Data Copying. 2001
International Conference on Computing in High Energy and Nuclear
Physics, Beijing, China, 2001.

18. Kosar, T. and Livny, M. A Framework for Reliable and Efficient
Data Placement in Distributed Computing Systems. Journal of
Parallel and Distributed Computing, 65(10):1146-1157 2005.

19. Madduri, R., Hood, C. and Allcock, W. Reliable File Transfer in Grid
Environments. LCN:737-738, 2002.

20. Monti, H., Butt, A.R. and Vazhkudai, S.S., CATCH: A Cloud-based
Adaptive Data Transfer Service for HPC. 25th IEEE International
Parallel & Distributed Processing Symposium, Anchorage, Alaska,
2011.

21. Novotny, J., Tuecke, S. and Welch, V., An Online Credential
Repository for the Grid: MyProxy. 10th IEEE International
Symposium on High Performance Distributed Computing, San
Francisco, 2001, IEEE Computer Society Press.

22. Rajasekar, A., Moore, R., Hou, C.-Y., Lee, C.A., Marciano, R., de
Torcy, A., Wan, M., Schroeder, W., Chen, S.-Y., Gilbert, L., Tooby,
P. and Zhu, B. iRODS Primer: Integrated Rule-Oriented Data
System. Morgan and Claypool Publishers, 2010.

23. Rehn, J., Barrass, T., Bonacorsi, D., Hernandez, J., Semeniouk, I.,
Tuura, L. and Wu, Y., PhEDEx high-throughput data transfer
management system. Computing in High Energy Physics (CHEP),
Mumbai, India, 2006.

24. Shoshani, A., Sim, A. and Junmin Gu, Storage Resource Managers:
Middleware Components for Grid Storage. Nineteenth IEEE
Symposium on Mass Storage Systems, 2002.

25. Thain, D., Basney, J., Son, S.-C. and Livny, M., The Kangaroo
Approach to Data Movement on the Grid. 10th IEEE International
Symposium on High Performance Distributed Computing, 2001,
IEEE Computer Society Press, 7-9.

26. Tridgell, A. and Mackerras, P. The rsync algorithm. TR-CS-96-05,
Department of Computer Science. Australian National University.
Canberra, ACT 0200, Australia, 1994.

27. Tuecke, S., Welch, V., Engert, D., Pearlman, L. and Thompson, M.
Internet X.509 Public Key Infrastructure Proxy Certificate Profile.
Internet Engineering Task Force, 2004.

28. Wang, L., Park, K.S., Pang, R., Pai, V. and Peterson, L., Reliability
and security in the CoDeeN content distribution network. USENIX
Annual Technical Conference, Boston, MA, 2004, USENIX
Association, 14-14.

