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ABSTRACT 

We propose that research data management capabilities be delivered 
to users as hosted “software as a service” (SaaS). We report on a 
system, Globus Online, that adopts this approach, initially for a small 
set of data movement functions. Globus Online leverages modern 
Web 2.0 technologies to provide fire-and-forget file transfers, 
automatic fault recovery, and high performance, while also 
simplifying security configuration and requiring no client software 
installation. SaaS means that new features are rapidly available, and 
provides for consolidated support and troubleshooting. We describe 
Globus Online’s design and implementation. We also describe a 
novel approach for providing a command line interface to SaaS 
without distributing client software, and Globus Connect, which 
simplifies installation of a GridFTP server for use with Globus 
Online. Experiments show low overhead for small transfers and high 
performance for large transfers, relative to conventional tools, and 
demonstrate scalability to many concurrent requests and files.  
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Reliability, Experimentation, Security, Human Factors. 
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1. INTRODUCTION 
As big data emerges as a force in science [5], so too do new and 
onerous tasks for researchers. Data generated by specialized 
instrumentation, numerical simulations, and downstream analyses 
must be collected, indexed, archived, shared, replicated, and mined—
and often manipulated in many other ways besides. These tasks are 
not new, but the complexities inherent in performing them for 
terabyte data sets, which are increasingly common across scientific 
disciplines, are quite different from those that applied when data 
volumes were measured in kilobytes or megabytes. The result is a 
crisis of sort in many research laboratories and a growing need for far 
more powerful data management tools. 

We focus in this paper on a small subset of the overall research data 
management problem, namely the orchestration of data movement 
among two or more locations. This task may sound trivial, but in 
practice it is often tedious and difficult. Datasets may have complex 
nested structures, containing many files of varying sizes. Source and 
destination may have different security requirements and 
authentication interfaces. Network and storage server failures must be 
recovered from. Transfers must be carefully tuned to exploit high-
speed research networks. Perhaps only some files differ between 
source and destination. Firewalls, Network Address Translation 

(NAT), and other network complexities may need to be dealt with. 
For these and other reasons, it is not unusual to hear stories of even 
modest-scale wide area data transfers taking days or even weeks, 
with frequent user intervention, or of being abandoned for high 
bandwidth but also high latency (and frequently also labor-intensive 
and error-prone) “sneakernet” [15]. 

Current research data movement solutions fall into three main 
classes. (1) Client software allows the user to move data between 
their own computer and a single remote location. Examples are 
secure copy (scp) and rsync, both of which provide ease of use and 
access to most facilities, but often only modest performance, and 
leave fault recovery to users. In effect, these systems are a lowest 
common denominator. (2) Third-party systems allow for the 
movement of data among two or more remote sites. Examples 
include globus-url-copy, Reliable File Transfer (RFT) [16], CERN’s 
File Transfer Service (FTS), and LIGO’s Data Replicator (LDR) [7]. 
These systems’ support for third-party transfer is valuable for many 
users, and they often have better performance and fault behaviors 
than client systems, but the need to install and operate complex 
software can be a barrier to use. They are also often custom to 
specific data types and network configurations, and so can only be 
used by specific communities. (3) Hosted approaches introduce an 
intermediate system to which data is copied for subsequent download 
by its intended recipient(s). This approach, exemplified by systems 
such as email, Dropbox and YouSendIt, provides simplicity and a 
degree of delivery guarantee, but is not suitable for the extremely 
large datasets that are common in science. 

Globus Online (GO) adopts a hybrid of the third-party and hosted 
approaches. It implements management functionality similar to (but 
more sophisticated than) that provided by systems such as RFT, FTS, 
and LDR, but delivers this functionality not as downloadable 
software but as hosted “software as a service” (SaaS). It is a cloud-
hosted, managed service, meaning that you ask it to move data; it 
does its best to make that happen, and tells you if it fails.  

SaaS allows GO to exploit economies of scale, as a single hosted 
service serves many individuals and communities. SaaS means that 
new features are immediately available to users, and allows experts to 
intervene and troubleshoot on the user’s behalf to deal with more 
complex faults. It leverages widely available resource access services 
(e.g., GridFTP, and in the future HTTP) to integrate with storage 
resources, and operates across multiple security domains and 
technologies, so that it can be used across a wide range of facilities. 
GO’s support for GridFTP delivers the benefits of grid technology, 
including support for heterogeneity and local control of access 
control and resource allocation policies at individual endpoints [14]. 

GO further leverages modern Web 2.0 technologies to provide 
extreme ease of use while requiring no client software installation. It 



can be accessed via different interfaces depending on the user and 
their application. A simple Web GUI serves the needs of ad hoc and 
less technical users. A command line interface via ssh exposes more 
advanced capabilities and enables scripting for use in automated 
workflows. A REST application programming interface (API) 
facilitates integration for system builders who do not want to re-
engineer file transfer solutions for their end users; this REST 
interface also supports the GO Web interface. 

The Web GUI allows a client to establish and update a user profile, 
and to specify desired authentication method(s). All access methods 
enable the client to specify the method(s) to be used to authenticate to 
the facilities to/from which data will be transferred; authenticate 
using various common methods, such as username and password, 
Google OpenID, OAuth [16], Shibboleth [13], or MyProxy [21] 
providers; characterize endpoints to/from which transfers may be 
performed; request transfers; monitor transfer progress; get detailed 
information about the transfer; and cancel active transfers. Having 
authenticated and requested a transfer, a client can disconnect, and 
return later to find out what happened. GO tells you which transfer(s) 
succeeded and which, if any, failed. It notifies you when a transfer 
completes, or if a critical fault has occurred such as a deadline not 
met, or a transfer requires additional credentials to proceed. In 
addition, GO can handle transfers across multiple security domains 
with multiple user identities. 

We describe the GO design and its implementation, which leverages 
Amazon Web Services (AWS) infrastructure-as-a-service (“cloud”) 
resources for reliability and scalability. We also report on 
experiments designed to evaluate the performance, scalability, and 
cost of the system. These experiments show that overhead for small 
transfers is modest relative to client-side tools and that performance 
for large transfers is usually not only far better than that of scp, but 
also significantly better than that achieved with out-of-the-box 
configurations of the widely used globus-url-copy, due to GO’s 
ability to automatically tune transfers for high performance. We also 
demonstrate scalability to many concurrent requests and files. 

This work is part of a project that aims to deliver research data 
management functionality as hosted “software as a service” (SaaS), 
rather than downloadable software that must be installed and 
operated by the user. In this way, we believe, we will be able to 
exploit economies of scale and the benefits of expert management for 
many individuals and communities, while alleviating research users 
of the burden of installing and operating complex software. 

We believe that this paper makes two useful contributions to our 
understanding of research data management. First, we describe and 
evaluates an innovative new data management solution: the GO 
SaaS-based data movement service, which has its roots in “Grid” 
techniques but goes far beyond traditional Grid approaches. Second, 
we make the case for the use of SaaS methods for research data 
management more generally, arguing for the advantages of thus 
making sophisticated capabilities available to all researchers and 
facilities, in an easy-to-use and cost-effective manner. 

2. REQUIREMENTS & RELATED WORK 
We first define our problem and review previous approaches.  

2.1 General Problem Statement 
Our broad interest is in accelerating discovery by outsourcing 
challenging research management problems—that is, delivering 
sophisticated functionality to researchers in a manner that minimizes 
their IT burden and cost. The focus of the work presented here is on 
the specific problem of file transfer. Our target users need to copy a 
number of files, with potentially large aggregate size, among two or 
more network-connected locations (“endpoints”)—reliably, rapidly, 

securely, and easily. These endpoints may or may not include the 
computer from which the data movement command is issued: in other 
words, third-party transfers may be (and indeed frequently are) 
involved. Our goal is a solution that provides extreme ease-of-use 
without compromising reliability, speed, or security. 

A 2008 report [9] makes clear the importance of usability. In 
particular, failure recovery has often been a human-intensive process:  

“The tools that we use to move files typically are the standard Unix 
tools included with ssh. And for that we don’t need more 
information—it’s just painful. Painful in the sense of having to 
manage the transfers by hand, restarting transfers when they 
fail—all of this is done by hand. Then of course there are the 
hardware problems: dealing with the sluggishness on some of the 
networks like the ESNet, which we’ve had some problems with 
recently. The file transmission rates are painfully slow, errors 
occur and then we have to retransmit.” 

The same user bemoans the need to determine manually which 
transfers have succeeded and, perhaps more importantly, failed: 

“If I have a list of a few hundred files, and I want to get from point 
A to point B, and I start the process and something happens (it 
breaks or dies in the middle) I have to retransmit. But I don’t 
want to retransmit all of it. The process of sorting through which 
one succeeded and which ones did not, and restarting. It’s a time-
consuming and annoying process and is something that slows 
down work.” 

One approach to data movement involves running tools on the user’s 
computer. For example, rsync [26], scp, FTP, SFTP, and bbftp [17] 
are often used to move data between a client computer and a remote 
location. Other software, such as globus-url-copy, RFT [19], FTS, 
and LDR, can manage many transfers. However, the need to 
download, install, and run software is a significant barrier to use. 
Users spend much time installing, configuring, operating, and 
updating such tools, particularly when dealing with large data 
volumes, many files, high-speed networks, and/or frequent failures. 
Additionally, users rarely have the IT and networking knowledge 
necessary to fix things when it does not “just work”, which as 
suggested by the user quoted above happens all too often. 

Various big science projects have developed specialized solutions to 
this problem. For example, PhEDEx  [23] manages data movement 
among sites participating in the CMS experiment, and LIGO 
developed the LIGO Data Replicator [8]. These centrally managed 
systems allow users to hand off data movement tasks to a third party 
that performs them on their behalf. However, these services require 
professional operators and only operate amongst carefully controlled 
endpoints within those communities: they cannot easily be installed, 
operated, or used by a smaller project amongst its endpoints. 

Managed services such as YouSendIt and DropBox also provide data 
management solutions, but do not address our target users’ need for 
high-performance movement of large quantities of data. BitTorrent 
[11] and Content Distribution Networks [28] such as Akamai, are 
good for distributing a relatively stable set of large files (e.g., 
movies), but do not address our target users’ need for many, 
frequently updated files managed in directory hierarchies. Storage 
Resource Broker (SRB [4]) and its iRODS [22] successor are storage 
managers that are often run in hosted configurations. However, while 
these systems can perform some data transfer operations (e.g., for 
data import), data transfer is not their primary function or focus. 

Kangaroo [25], Stork [18], and CATCH [20] manage data movement 
over wide area networks, using intermediate storage systems where 
appropriate to optimize end-to-end reliability and/or performance. 



These systems are not intended as SaaS data movement solutions, but 
we could incorporate their methods within GO. 

2.2 More Detailed User Requirements 
Limited space does not permit a comprehensive presentation of user 
requirements, but we point out some important issues identified 
during our use case development process. 

We assume for now that data is accessible via FTP or GridFTP [1], 
though as we describe below our Globus Connect agent makes it easy 
to make data accessible from other resources including end-user 
laptops, desktops and servers. (Support for HTTP, WebDAV, SRM 
[24], and other access methods is planned for the future.) Different 
endpoints may require different security credentials and 
configurations. Some may have firewalls that prevent incoming 
connections. The networks over which transfers are to be performed 
may vary greatly in their performance and reliability. Nevertheless, 
users desire fire-and-forget data transfer capabilities. 

We find it useful to distinguish among multiple user types. Ad-hoc 
users perform mostly one-off transfers, as opposed to performing 
similar transfers repeatedly. They want to move data in the same way 
as they perform other tasks on their computer: via a convenient and 
easy graphical user interface. For them, a Web interface is essential. 

Script writers create automated workflows to assist with their work: 
for example, a script that, each evening, transfers new files created 
during the day’s work to a remote repository, or which automatically 
moves output from an analysis job back to their local machine. For 
them, a command line interface (CLI) is often desirable, as it allows 
such workflows to be specified using shell scripts or other simple 
solutions. One challenge to which we describe a solution below is 
how to deliver a CLI to users without violating the Software-as-a-
Service tenant of no client software installation. 

Finally, systems builders develop or adapt domain-specific tools for 
various communities, such that the file transfer is integrated into a 
larger system. A REST API is desirable, to facilitate integration 
without requiring re-engineering of the file transfer solutions that 
they deliver to end-users. System builders often want to customize 
the user experience, so that their users experience a consistent look 
and feel, even when they are interacting directly with GO. 

Web and REST interfaces to centrally operated services have become 
conventional in business, where it underpins services such as 
Salesforce.com (customer relationship management), Google Docs, 
Facebook, and Twitter. It is not yet common in science. Two 
exceptions are PhEDEx Data Service [12], which provides both 
REST and CLI interfaces to CMS data operations, and the NERSC 
Web Toolkit (NEWT) [10], which enables RESTful operations 
against HPC center resources. 

3. DESIGN AND IMPLEMENTATION 
We present the system design from the perspective of the user and 
also describe important elements of its implementation.  

3.1 Architecture Overview 
As illustrated in Figure 1, GO comprises one or more user gateway 
servers, which support interaction between users and the system via 
the Web GUI, CLI and REST interfaces; one or more workers, which 
orchestrate data transfers and perform other tasks, such as notify 
users of changes in state; and a profiles and state database for user 
profiles, request state, and endpoint information.  Web, command-
line, and REST interfaces provide similar capabilities, although not 
all functionality is available through the Web GUI as of June 2011. 

 
Figure 1: Schematic of the Globus Online architecture 
The REST interface uses HTTP GET, PUT, POST, and DELETE 
operations against a defined set of URLs representing GO resources. 
Thus, to create a transfer task, we issue a POST to 
https://transfer.api.globusonline.org/v0.10/transfer 
with a document describing the transfer request (source and 
destination endpoints and file paths, options, etc.). To access the 
status of a task with a specified <task_id>, we issue a GET request to 
https://transfer.api.globusonline.org/v0.10/task/<ta
sk_id>; a document is returned with the status information. The 
REST interface is versioned, so GO can evolve its REST interface 
without breaking existing clients. Documents passed to and from 
HTTP requests can be formatted using JSON or XML. Supported 
security mechanisms include HTTPS mutual authentication with an 
X.509 client certificate, and HTTPS server authentication with 
cookie-based client authentication (for Web browsers). 

The GO Web interface builds on the REST interface, using standard 
AJAX techniques. A GO Web page contains standard HTML, CSS, 
and Javascript, and interacts with the REST interface using standard 
session cookie-based client authentication. The Web GUI supports 
browsing remote file systems, and submitting, monitoring, and 
cancelling transfer requests. 

A command line interface (CLI) supports client-side scripting. 
However, a CLI typically requires installation of client-side libraries, 
which is counter to a key SaaS tenet of not requiring client software 
installation to use the service. To provide SaaS CLI, GO has 
employed a novel “CLI 2.0” approach that eliminates the need to 
install client software (for those machines already configured with 
ssh). It provides all GO users with a restricted shell, to which any 
user can ssh to execute commands. Thus, I can write  

    ssh ian@cli.globusonline.org \ 
     scp alcf#dtn:~/myfile nersc#dtn:~/myfile 

to copy myfile from source alcf#dtn to destination nersc#dtn. The 
boldface text invokes the GO scp command, which mirrors the syntax 
of the popular scp. It supports many regular scp options, plus some 
additional features—and is much faster because it invokes GridFTP 
transfers. Alternatively, I can first ssh to cli.globusonline.org and 
then issue a series of commands directly: 

ian$ ssh cli.globusonline.org 
Welcome to globusonline.org, ian. 
$ scp alcf#dtn:~/myfile nersc#dtn:~/myfile 
Contacting 'gs1.intrepid.alcf.anl.gov'... 
Enter MyProxy pass phrase: ******** 

This example also illustrates how endpoints can define logical names 
for physical nodes. For example, alcf#dtn denotes the data transfer 
nodes running GridFTP servers at the Argonne Leadership 
Computing Facility. Sites can define and publish their own endpoint 
definitions (e.g., alcf#dtn, nersc#drn); users have the ability to define 
custom endpoint definitions as well (e.g., mylaptop, myserver). 
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Table 1 lists the primary transfer management functions supported by 
the GO interfaces. Additional endpoint management functions 
provides for the creation, deletion, configuration, activation, and 
deactivation of logical endpoints. Other functions support 
administrative tasks, such as listing available commands, reviewing 
command history, and obtaining command help. 

GO maintains a database of active transfer requests (“tasks”) and, for 
each task, its current state. The state transition diagram associated 
with a task is simple. A request is submitted and (subject to limits on 
the number of active requests allow for one user at one time) 
becomes active. The task then remains active until it is suspended 
because of an expired credential; completes successfully because all 
files in the task have completed; or fails, either due to the deadline 
defined with the task being reached, or the user cancelling the 
transfer. When executing a task, GO attempts to execute each file 
transfer in turn; multiple concurrent transfers may be used to improve 
performance when dealing with small files. If a transfer fails, GO will 
keep attempting it periodically until either the task deadline is 
reached or the user cancels the request. 

3.2 User Profile and Identity Management 
An important feature of GO is its ability to handle transfers across 
multiple security domains with multiple user identities. Unlike most 
other systems, including most previous Grid file transfer services, 
GO does not require the use of a single, common security credential 
across all endpoints involved in a transfer. Rather, GO assumes from 
the start that users have many identities for use with many different 
service providers, and that it is GO’s job to make sure that the right 
identities are brought to bear at the right time for any transfer; and to 
do so in a way that is easy for users to understand and use. 

Table 1: Principal Globus Online data transfer commands 

Class Name Description 

C
re

at
e 

tra
ns

fe
r 

ls List files and directories on an endpoint. 
transfer Request data transfer of one or more files or 

directories between endpoints; supports 
recursive directory transfer and rsync-like 
synchronization. 

scp Request data transfer of a single file or 
directory; syntax and semantics based on 
secure copy utility, to facilitate application 
porting 
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status List transfers initiated by requesting user, 
along with summary information such as 
status, start time, completion time, etc. 

details Provide details on a transfer, such as number 
of file transferred, number of faults, etc. 

events List events associated with a specified transfer 
(start, stop, performance, faults) 

 C
on

tro
l 

tra
ns

fe
rs

 

cancel Terminate the specified transfer or individual 
file in a transfer 

wait Wait for the specified transfer to complete; 
shows a progress bar 

modify Alter the deadline for a transfer 

To this end, each GO user has a GO account, in which that user can 
easily configure their profile with their various identities. For 
example, a user can easily add to their profile their MyProxy CA [21] 
identities (e.g., for NERSC, ALCF, and other computing centers that 
use this approach), OAuth [16] identities (e.g., for TeraGrid or 
Facebook), OpenID identities (e.g., for Google), Shibboleth [13] 
identities (e.g., for campus credentials), and X.509 identities (e.g., 
from DOE Grids CA or another IGTF-certified CA).  

While GO can store identities, it does not store passwords. Rather, it 
know just the identity and how to use it, so that it can prompt the user 
with the appropriate information when that identity is needed. In 
addition, some or all identities can be configured as “federated 
identities” that the user can use to authenticate with GO. For 
example, if I have already authenticated my browser session with an 
OpenID, OAuth, or Shibboleth identity, I can use the GO Web site 
without having to authenticate further; X.509 (proxy) identities can 
be used to authenticate with the GO Web site, CLI, and REST API. 

GO keeps track of what security credentials are required by the 
different endpoints with which a user may wish to communicate. 
Then, where possible, it caches information that it can use to 
facilitate access. For example, assume that user U must provide 
X.509 credential U-A to access endpoint A, and X.509 credential U-
B to access endpoints B1 and B2. In order for GO to perform a file 
transfer from A to B1 as requested by the user, GO requires short-
term (typically 12 hour) X.509 proxy credentials [27] that it can use 
to authenticate the user request to the GridFTP servers running at 
endpoints A and B1. If GO does not have such credentials, it will 
prompt the user for them when the user requests the transfer. For 
example, if endpoints A and B1 each use their own MyProxy CA 
servers, GO will prompt the user for their site logins at each endpoint, 
in order to retrieve the necessary X.509 proxy credentials from the 
MyProxy CA server. Alternatively, a user (or script) can proactively 
push X.509 proxy credentials to GO for use with specific endpoints.  

Once GO has needed credentials it can proceed with the transfer. GO 
will then cache those credentials until they expire or are explicitly 
deleted by the user. If user U subsequently requests another transfer 
that requires existing credentials (e.g., AB1), GO will use these 
cached credentials. GO will also use the same user proxy credential 
for endpoints that have the same default MyProxy server, so a user 
does not have to enter the same password multiple times. For 
example, it will recognize that it already has U-B from the first 
transfer to B1, and that this same credential can be used with B2. Of 
course, each user has a distinct credential cache. If a credential 
expires before the transfer completes, GO will notify the user via 
email (and SMS, Instant Messenger, and Twitter in the future) that 
the user need to re-authenticate to get a fresh credential. Until such 
time as the credential is renewed, the transfer will be suspended. 

3.3 A Scalable Cloud-based Implementation 
Successful SaaS requires reliability and scalability: the service must 
continue operating despite the failure of individual system 
components, and behave appropriately as usage grows. To this end, 
we apply methods commonly used by SaaS providers. We run GO on 
Amazon Web Services. User and transfer profile information are 
maintained in a database that is replicated, for reliability, across 
multiple geographical regions. Transfers are serviced by nodes in 
Amazon’s Elastic Compute Cloud (EC2), which makes it possible to 
scale the number of servers used to manage data transfers as service 
demands increase. User gateways are also run across multiple 
servers, with load balancing, to achieve reliability and scalability. All 
of this infrastructure runs within Amazon Security Groups, so that 
only appropriate HTTP and SSH ports are exposed to the Internet.  

GO workers initially used the globus-url-copy client program to 
manage transfers. However, globus-url-copy is a complex program 
comprising more than 40,000 lines of code with many features not 
needed by GO, and that furthermore does not include important 
optimizations and fault handling that are possible in the hosted GO 
context. Thus, we developed fxp, a simple GridFTP client that uses 
the same Globus control channel library that underlies globus-url-
copy, but with GO-specific optimizations. For example, when fxp 
gets a transfer request consisting of multiple source-destination URL 
pairs, it knows that all source URLs correspond to a single logical 



source endpoint and all destination URLs correspond to a single 
logical destination endpoint. Thus, it can do better load balancing. 
Fxp also provides good error attributions, and improves on globus-
url-copy’s pipelining performance for many small files. 

3.4 Globus Connect 
The GO user need not install software to request transfers between 
remote GridFTP servers. However, software installation is required if 
a source or destination computer does not have GridFTP installed: for 
example, when transferring data to/from a user’s computer. 

To address this need, we introduce Globus Connect, a one-click 
download-and-install application for MacOS, Linux, and Windows. 
In brief, Globus Connect comprises a GridFTP server that runs as the 
user (rather than root from inetd like a typical GridFTP server), and a 
GSI-OpenSSH client configured to establish an authenticated 
connection to a GO relay server, so as to tunnel GridFTP control 
channel requests from GO. This Globus Connect GridFTP server 
only uses outbound data channel connections. GO can direct transfer 
requests to/from a Globus Connect instance via the control channel 
tunnel. Thus, to request a data transfer to/from the computer on 
which they have installed Globus Connect, the user interacts with GO 
just as they would to request any other transfer (Figure 2). GO relays 
the request via the tunnel to the Globus Connect server, which then 
engages in the transfer. This approach has several advantages. First, 
the Globus Connect server only establishes outbound connections and 
thus can work behind a firewall or other network interface device that 
does not allow for inbound connections. Second, the Globus Connect 
server is stateless and thus can be started and stopped at will: all state 
associated with transfers is maintained by GO. 

 
Figure 2: A schematic of the Globus Connect architecture 
Note that Globus Connect does not currently allow for transfers 
between two Globus Connect endpoints, as both would attempt to 
establish an outgoing connection to the other. We expect to introduce 
support for Globus Connect-to-Globus Connect transfers, for 
example via the use of intermediate data channel relay servers. 

3.5 Globus Connect Security Configuration 
Globus Connect also incorporates user-friendly methods for 
automating security configuration. GridFTP’s use of public key 
authentication protocols means that each GridFTP server must 
possess an X.509 certificate issued by a certificate authority (CA), 
which the client (in our case, a GO worker) uses to verify that it is 
talking to the correct GridFTP server. Thus, to configure a 
conventional GridFTP server, a user must either obtain an X.509 
certificate from a well-known certificate authority (CA)—or, 
alternatively, set up their own CA and issue a certificate, which they 
must then ensure is accepted by other sites. Likewise, the client must 
possess an X.509 certificate issued by a CA that is trusted by the 
GridFTP server. In addition, in order to access the files on a GridFTP 
server, the subject of the user’s X.509 certificate must be mapped to a 
local user account. These tasks can be much more tedious than 
building/installing the GridFTP software. 

We overcome these problems in two ways. First, we automate the 
process of generating, installing, and configuring the certificate 
required for a Globus Connect installation. We use an online, private 
CA incorporated in GO to generate a new service certificate when a 
user adds a Globus Connect endpoint. The user copies a secret “Setup 
Key” from the GO web site to the Globus Connect setup window in 
order to securely pair it to their new endpoint definition.  Globus 
Connect uses the setup key as a one-time-use token to download the 
certificate, private key, and GridFTP gridmap configuration over a 
secure GSI-OpenSSH connection. GO can then authenticate to the 
Globus Connect and be sure it is talking to the correct one. 

Further problems relating to data channel authentication (DCAU) can 
arise when a user requests a transfer involving the Globus Connect 
endpoint. The GridFTP protocol [2] defines DCAU for a third-party 
transfer to involve mutual validation of the X.509 credentials that the 
requesting user provides to the two endpoints involved in the transfer. 
Thus, if endpoint A requires that the user supply a credential A (e.g., 
an X.509 proxy certificate issued by CA-A) and endpoint B requires 
that the user supply a credential B (e.g., an X.509 proxy certificate 
issued by CA-B), then endpoint A must, as part of data channel setup, 
receive and validate credential B, and endpoint B must receive and 
validate credential A. However, this process fails if CA-A is 
unknown to endpoint B, or vice versa: see the upper part of Figure 3.  

 

 
Figure 3: Above: the data channel authentication problem. 
Below: using DCSC to overcome the problem. 
This problem is not unique to Globus Connect, but is particularly 
likely to arise when using Globus Connect because Globus Connect 
endpoints use credentials from the GO private CA, which few other 
sites trust. In order to address this limitation, we introduced a new 
Data Channel Security Context (DCSC) command in GridFTP. A 
GridFTP client (e.g., GO) can use this command to tell a DCSC-
enabled GridFTP endpoint to both accept and present to the other 
endpoint a different credential than was used to authenticate the 
control channel. For example (see Figure 3, below), it can use DCSC 
to pass credential A to site B, for subsequent presentation to site A. 
Note that this command enables DCAU even if one endpoint is a 
legacy GridFTP server that knows nothing about DCSC. 

4. EXPERIMENTAL EVALUATION 
We summarize studies of GO performance and scalability.  
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4.1 Request dispatch overhead 
We first evaluate the costs associated with dispatching requests to a 
hosted service rather than executing them directly on the user’s 
computer. We may expect that this dispatch will introduce some 
overhead, due to need to communicate the request to the GO user 
gateway that is operating on a remote computer. The GO 
implementation has been designed and implemented to minimize 
these costs, but we are still concerned to evaluate them. 

We issued 100 consecutive requests to transfer a one-byte file 
between two locations, using first scp and then GO scp dispatched to 
GO via SSH. We measured total times of 93 and 273 seconds, 
respectively—an average per-request cost of 0.93 seconds for SCP 
and 2.73 seconds for GO scp. Thus, we conclude that the request set 
up cost associated with the use of GO is ~1.8 seconds. We view this 
overhead as acceptable. Note that if a user wants to request many 
transfers, they will normally do this with a single request. If a user 
wants to perform many consecutive small requests, then they may 
choose to log into the GO CLI gateway and issue the commands 
directly, and thus avoid the per-request SSH cost. 

4.2 Concurrent request overheads 
We may also be concerned that if GO is overloaded, the time 
required to respond to a request may increase. Thus, we measure 
transfer time as a function of the number of requests that a single 
EC2 instance is processing. For these experiments, all transfers are 
performed entirely between GridFTP servers hosted in the Amazon 
cloud, so that we can easily scale up and down the number of “users” 
that generate requests concurrently to a user gateway server. 

Figure 4 shows the mean transfer rate (in bytes/sec) achieved when 
GO is processing between 1 and 63 requests at the same time, where 
each request involves many transfers of the same size, ranging from 
0.001 MByte to 1000 MB. In this experiment, all transfer 
management operations occur within a single Amazon EC2 c1.xlarge 
instance, which has eight virtual cores and 7 GB of memory; this 
demonstrates the scalability of a single instance, though GO can scale 
larger by using multiple instances to handle the requests. Transfers 
are between GridFTP endpoints instantiated on different EC2 servers 
within different Availability Zones in the same Region. (From 
aws.amazon.com/ec2: “Availability Zones are distinct locations that 
are engineered to be insulated from failures in other Availability 
Zones and provide inexpensive, low latency network connectivity to 
other Availability Zones in the same Region.” We map transfer 
endpoints to Availability Zones within the same region to 
approximate data transfer within a single campus.) 

We see that, as expected, average transfer rate is lower for smaller 
files. Furthermore, there is a decline in transfer rate as the number of 
concurrent users increases. However, this decline is modest except 
for small files. This result makes sense, as transferring smaller files 
put a larger load on GO than larger files, due to the increased 
GridFTP control channel traffic, and the resultant increased load on 
the GO database that tracks the transfer progress.  

4.3 Data transfer performance 
We next evaluate performance when transferring large quantities of 
data between pairs of endpoints. To evaluate GO’s performance 
optimization logic in practical situations, we compare GO 
performance with that achieved when using scp and the globus-url-
copy (GUC) client. As scp is known to perform badly, particularly 
over wide area networks, we include it primarily as a sanity check: if 
GO is not better than scp, then something is wrong. GUC, on the 
other hand, drives GridFTP transfers, and so is a fairer comparison. 
However, in its default configuration (which many people use 
unchanged) it does not employ optimizations used by GO. For 
example, it does not enable concurrency, parallelism, pipelining, or 

data channel caching. Thus this comparison allows us to evaluate the 
performance gains that many users can expect to gain from GO. We 
also compare GO against GUC with parameters hand tuned by an 
expert to maximize performance: “tuned-guc” in the results. 

 
Figure 4: Average transfer performance as a function of number 
of concurrent requests, for different files sizes 
We present results in Figure 5 over a high-speed wide area network 
(ESNet) between two high-performance parallel storage systems, and 
Figure 6 between local instance storage of two EC2 instances within 
different Amazon Availability Zones within a single Region, to 
approximate a transfer over a campus network. In Figure 5, we give 
results both between a single data transfer node (DTN) at ALCF and 
NERSC (“go-single-ep”), and (the default configuration) using the 
two DTNs that are supported by ALCF and NERSC (“go”). Each 
DTN is a fast server with a 10 Gb/s network to ESnet, and a fast local 
connect to each site’s GPFS parallel file system. 

 
Figure 5: Data transfer performance between ALCF and NERSC  
Scp performs badly in all cases. GUC with its default configuration 
performs badly for all sizes over the wide area, and for small files in 
the local area. (Clearly, the default configuration requires 
improvements.) Tuned-guc performs better than GUC in almost all 
cases. In the wide area case, it does less well than GO for smaller 
files—probably because GO drives GridFTP pipelining more 
aggressively, due to the improved pipelining support in GO’s fxp 
GridFTP client. Tuned-guc does better than GO for large files; there 
remain opportunities to tune GO performance further. Note that the 
GO transfers to a two DTNs vs. a single DTN are not substantially 
different except for the largest transfer. We conclude the bottleneck is 
not the DTNs, but rather either the network or local storage. 



5. EXPERIENCES 
We assess early user, operator, and site experiences with GO.  

5.1 User Experiences 
Account creation and new user training requests initially made up the 
bulk of GO support mail.  As account management functions were 
automated and documentation matured, such requests 
declined.  Current emails are mostly feature requests, problem reports 
for new code (e.g., Globus Connect,) and endpoint-related problems 
(e.g., firewall troubles, GridFTP configuration issues).  GO staff 
work with network engineers and system administrators around the 
world to help fix their problems. 

 
Figure 6: Data transfer performance between two EC2 instances 
Though inevitably anecdotal, initial feedback from the GO user 
community has been positive. We briefly describe one ad hoc 
interaction and two domain-specific projects. The ad hoc example 
involved a 300,000 file, 586-terabyte transfer from Argonne, half to 
the Oak Ridge Leadership Computing Facility (OLCF) and half to 
NERSC. In Figure 7, the X-axis gives the file numbers, ordered by 
completion time, and the Y-axis the completion time. During a first 
phase, extending until the dashed vertical line, transfers proceeded to 
both remote sites, with a total average transfer speed of 5.7 
gigabit/sec. At the dashed line, all transfers to NERSC had 
completed, and all subsequent transfers are to OLCF.  

The extended pause was due to an error relating to Amazon not 
correctly handling reverse DNS for OLCF hosts. (Sites other than 
OLCF resolved correctly inside Amazon; non-Amazon sites found 
OLCF hosts.)  GO operators could not pinpoint the source of the 
problem, and thus installed a workaround that enabled the GO server 
to resolve the OLCF hosts. Eventually, reverse DNS started working 
properly for OLCF hosts within Amazon, allowing the OLCF-
specific workaround to be removed by the GO administrators. OLCF 
administrators speculate that these errors occurred because DNS 
servers used by Amazon had bad data cached after ORNL made some 
DNS changes, and that it took time for those caches to update. 

GO administrators took several days to correct the DNS lookup 
problem because it took the various system administrators time to 
understand the details.  GO operators provided OLCF system 
administrators with additional data from internal tests, but in the end 
the group could not pinpoint the problem. Once the workaround was 
deployed the transfers resumed immediately. 
The Earth System Grid (ESG) [6] community has integrated GO into 
its gateway nodes. GO has also been integrated, in less than half a 
day, into a testbed version of the LIGO [3] ARchival Service 

(LARS). A LIGO user with a LARS identifier and some metadata 
about analysis files can click a button that submits a transfer job to 
cli.globusonline.org via GSISSH to have the files replicated to 
LIGO’s archival space. In both cases, use of GO provides users with 
higher performance and eliminates the need for the application 
system to monitor data movement and manage fault recovery.  

 
Figure 7: Log for 586 TB transfer (see text for details) 

5.2 Globus Online Operator Experiences 
The GO team provides professional systems administration, 
operation, and help desk. All GO servers are monitored using Nagios, 
which allows us to respond quickly to failures. Our most commonly 
observed failure (several times in the past three months) is loss of an 
Amazon EC2 instance running one or more GO components. This 
failure has occurred far more often than we expected, indicating that 
we must make improvements to GO’s automatic fail-over capabilities 
to ensure that the service continues to operate through these node 
crashes without human intervention or user impact.  

The SaaS approach also facilitates troubleshooting. For example, one  
user employed GO to move data to 11 sites. All completed 
successfully, but monitoring showed that three sites had high transfer 
retry rates—more than 50 retries per file in one case. Investigation 
revealed misconfigured systems that had gone unnoticed for months. 
We worked with the site admins to get them fixed within days. 

5.3 Site Operator Experiences 
A third important class of GO participants are the sites that host 
endpoints involved in data transfers. We have seen positive responses 
from both high performance computing centers (e.g., DOE 
supercomputer centers, TeraGrid [7] sites) and operators of other 
major facilities such as DOE light sources—two groups that have a 
strong interest in providing their users with reliable, secure, and 
performance data movement services. NERSC (the National Energy 
Research Scientific Computing Center) at Lawrence Berkeley 
National Laboratory has adopted GO as a recommended method for 
its 4000+ users to transfer files to and from NERSC.  

6. CONCLUSIONS AND NEXT STEPS 
The Globus Online (GO) hosted data movement service leverages 
software-as-a-service (SaaS) methods to provide fire-and-forget file 



transfer, automatic fault recovery, and high performance, and to 
simplify the use of multiple security domains while requiring no 
client software installation to submit and monitor requests. Globus 
Connect provides for easy installation of a GridFTP server on a 
user’s machine, so that it can participate in GO transfers. The result is 
a system that provides automatic fault recovery, high performance, 
and easy-to-use security, to virtually all researchers and facilities. 

Experimental studies show that GO can achieve excellent 
performance in a wide variety of settings, with low per-transfer 
overhead and overall bandwidth better than the popular globus-url-
copy tool in its default configuration, and only exceeded by a human-
tuned globus-url-copy in a few large-file settings. Feedback from 
users and sites is also positive. For example, the NERSC 
supercomputer center recommends GO to its users for moving data in 
and out of NERSC storage systems. 

We continue to refine GO to further improve ease of use and to 
support other protocols and other data-related functions. Recognizing 
that a frequent reason for moving data is to share it with others, we 
are adding data sharing. To simplify the specification of sharing 
policies, we are integrating group management. These mechanisms 
provide in turn a foundation on which can be built a range of other 
capabilities such as support for collaborative tools.  
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