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Abstract

In grid computing environments, network bandwidth discovery and allocation is a serious issue. Before their appli-
cations are running, grid users will need to choose hosts based on available bandwidth. Running applications may need
to adapt to a changing set of hosts. Hence, a tool is needed for monitoring network performance that is integral to the
grid environment. To address this need, Gloperf was developed as part of the Globus grid computing toolkit. Gloperf is
designed for ease of deployment and makes simple, end-to-end TCP measurements requiring no special host permissions.
Scalability is addressed by a hierarchy of measurements based on group membership and by limiting overhead to a small,
acceptable, fixed percentage of the available bandwidth. Since this fixed overhead may push host-pair revisit time into
the tens-of-hours, we also quantitatively examine the “trajectory” of the cost-error trade-off for measurement frequency.



1 Introduction

In grid computing environments, network bandwidth discovery and allocation is a serious issue. When starting a grid ap-
plication, how do users know which hosts have suitable bandwidth among them? In the absence of any type of bandwidth
reservation mechanisms, how should applications initially configure and subsequently adapt themselves to prevailing
network conditions? While running applications can monitor their own performance, they cannot readily measure perfor-
mance in other parts of the environment. In light of these considerations, a tool for monitoring network performance in
grid computing environments is needed that is part of the grid infrastructure itself. However, performance monitoring is
not enough if the information is to be used to make resource allocation decisions. Instead, a scheduler (be it a human being
or an automatic scheduling program) must use the performance data that has been collected to predict what bandwidth
will be available when an application will consume it [1]. Gloperf bandwidth information can be used to make these
predictions.

To address these needs, Gloperf was developed as part of the Globus grid computing toolkit [15] with consideration
of all fundamental issues:

� Accuracy vs. Intrusiveness.

� Scalability.

� Portability.

� Fault Tolerance.

� Security.

� Measurement Policy.

� Data Discovery, Access and Useability.

Gloperf is designed for ease of deployment to enhance portability. It makes simple, end-to-end TCP measurements
such that no special host permissions or specific knowledge of link topology is required. Besides measuring what appli-
cations are more likely to experience, this also enhances Gloperf’s fault-tolerance. Data discovery and access is provided
by storing Gloperf data in a directory service that uses a well-known naming schema.

Scalability of such a tool is extremely important since grid environments have already been built that encompass
thousands of nodes. O(n2) measurements of all pairs can be avoided by using a hierarchy of host-pair measurements [17].
Monitoring overhead can also be limited simply by measuring less frequently.

When designing and deploying Gloperf, however, we realized that even with hierarchical measurement, the host-
pair revisit time may in the tens-of-hours if the total overhead is limited to a small, acceptable, fixed percentage of
the available bandwidth. Typically performance prediction error is minimized by attempting to track highly volatile
network performance with frequent measurements. Rather than doing this, we endeavored to expose the magnitude of
the prediction error when the measurement period exceeds twelve hours (which is the anticipate measurement frequency
for Gloperf when fully deployed). Hence, besides presenting the design of Gloperf, we also quantitatively examine the
“trajectory” of the cost-error trade-off such that users and site administrators can intelligently choose the monitoring
overhead that best meets their accuracy requirements while not exceeding their pain threshold.

2 Related Work

Network performance measurement is an extremely broad area and we can only briefly mention some of the more relevant
work. Carter and Crovella [3, 2] present bprobe and cprobe to measure the bottleneck link speed and competing traffic,
respectively, on a path using ICMP ECHO packets. Since these tools do not use TCP, they do not capture any TCP-related
effects that an application might experience. Van Jacobson’s pathchar [7] estimates bandwidth on all hops of a path and
hence can take a very long time. It also requires root access, making it less desirable for grid environments. TReno
[10] emulates an idealized TCP which makes the measurements independent of host-specific TCP implementations but
not representative of what applications would experience. TReno also needs root access. topology-d [11] uses ping and
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netperf to make measurements between all pairs within a group and then computes a minimum-cost logical topology.
The Network Weather Service (NWS) [17] uses TCP to send small, fixed-size probes measuring in the kilobytes with
a frequency that is tunable, but typically ranges from tens of seconds to several minutes. Performance measurement
systems, such as the National Internet Measurement Infrastructure (NIMI) project [12], however, are being designed for
arbitrary Internet hosts. This work is complemented by the Cooperative Association for Internet Data Analysis (CAIDA)
[5] whose goal is to develop metrics and tools for analyzing traffic across the Internet.

Finally we note that the data from such tools are intended to be used by “higher-level” systems. Remos [9] also
provides an API whereby applications can pose flow and topology-based queries. AppLeS (Application Level Scheduler)
[14] uses information from the NWS to schedule distributed, resource-intensive applications. Ultimately other Globus
components will use Gloperf information in similar resource discovery and allocation functions.

3 The Gloperf Design

Any performance monitoring system can be broken into four broad functional areas: (1) sensors, (2) collation of data,
(3) production of derived data, and (4) access and use of data. Gloperf is implemented as a set of gloperfd daemons
that act as the sensors. Gloperf data is collated into the Globus Metacomputing Directory Service (MDS) [4] which is
a Lightweight Directory Access Protocol (LDAP) server [6]. The MDS implements a structured information naming
schema, thus allowing any MDS client to access Gloperf data. Gloperf also relies on the MDS for information that allows
each gloperfd to follow the measurement policy. Each daemon does peer and group discovery based on MDS information
thus determining which peers to make measurements with.

When Globus is started on a host, one gloperfd will be started that registers itself by writing an object into the MDS.
After registration, gloperfd goes into its main control loop that has the following psuedo-code behavior:

while ( no termination signal ) {
query MDS for all gloperfds;
filter list of gloperfds on version number and groups;
build a randomized list of tests that does a

bandwidth test and a latency test to each filtered peer;
for each element of the list {
perform the test;
write the results in the MDS;
wait n minutes;

}
}

gloperfd loops until it is told to terminate by an external signal. On each iteration, gloperfd queries the MDS for all other
gloperfds to do peer and group discovery. Group membership is denoted by the group names appearing in the daemon’s
MDS object. gloperfd only does tests to peers that are in the same groups.

Groups are currently administered by hand. Daemons are in a group “local” to their site by default. Site administrators
must promote a local host to also be a member of the “global” group. This simple group mechanism allows an arbitrary
hierarchy of measurements to be specified. Once a daemon has identified its peers, it constructs a randomized list of
bandwidth and latency tests to each peer.

Gloperf does end-to-end bandwidth and latency measurements based a “librarized” version of netperf [8]. Gloperf
uses a netperf “TCP STREAM” test such that TCP/IP overhead is included in the measured throughput. Send and receive
buffer sizes are the local system defaults. Hence, the performance observed is what an untuned application would observe.
Gloperf uses a netperf “TCP RR” test to measure latency as the inverse of “transactions per second”.

One bandwidth or latency test in the randomized list is done every n minutes. Currently n = 5 minutes by default.
When both bandwidth and latency tests have been done for a peer, the data is stored with the source host object in the
MDS. Note that these tests are unidirectional; different tests are done from both ends of a host pair and written under the
source host object.
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Once the list of tests has been serviced and no termination signal has been caught, gloperfd queries the MDS again
since other daemons may have been added to or deleted from the testbed.

Design Discussion.

Gloperf does simple, active, end-to-end measurements that require no special host permissions or site-specific knowl-
edge. It is a decentralized design since each daemon does its own “autoconfiguration” of peer/group discovery and
scheduling/reporting of test results. While the Gloperf daemons rely on the MDS, there is no interaction between the
daemons other than that required for individual tests, i.e., there is no distributed scheduling of measurements. This sim-
plified, decentralized design enhances Gloperf’s fault tolerance since a failed host or link only affects the tests that require
those resources. We note that all Gloperf daemons and hosts are monitored by the Globus Heartbeat Monitor (HBM) [13]
which can be used to build arbitrary fault-recovery mechanisms.

Scalability and intrusiveness are major issues for tools such as Gloperf. Scalability is greatly enhanced by using a
measurement hierarchy based on group membership. This reduces the total number of tests and the number of “redundant”
tests over shared paths such as the backbones between institutional sites. This does, however, mean that some end-to-end
performance has to be estimated from a “path” of end-to-end measurements. While this complicates use of the data, we
can at least control the length of the paths via the number of groups.

Overall intrusiveness can be bounded simply by limiting each gloperfd to do no more than one test every k minutes.
Hence, a five-second test every five minutes limits the overhead to 1.6% on a time-spent-testing basis. This policy has
the undesirable property, however, of monotonically increasing the revisit time between any given host pair as the total
number of hosts increases. While this effect is ameliorated by the group hierarchy, there are still O(n 2) tests between n
local host pairs in a local group. A site with ten hosts, for example, could see a 90-minute revisit time for a given local
host pair. Given that we do not want to complicate the deployment and configuration of Gloperf and we want to minimize
Gloperf’s intrusiveness, how infrequently can we measure and still get useful data?

4 Performance Results

Ideally what is desired are highly accurate measurements that are minimally intrusive. Unfortunately more accurate
measurements typically means more frequent measurements which increase the intrusiveness. We can ameliorate the
effect of more frequent measurements by using shorter tests. While shorter tests will be less intrusive, TCP may never get
out of slow start and the measured bandwidth will be lower than what is actually available.

We examine these questions by comparing the error and cost of measurements for different test times and test periods
using a modified, experimental version of Gloperf. This version makes one test per minute between a fixed pair of
hosts. A cycle of five test times are used: 1, 2, 5, 7, and 10 seconds. Hence, we collect five, interleaved time series of
measurements, one for each test time with five minutes between tests. This allows us to examine the effect of test time.
To evaluate the effect of test period, we will compare the error in this five-minute data with the error produced when the
same data is subsampled to effectively produce a longer test period. For instance, we can subsample every twelfth point
to effectively produce a one-hour test period. In the trace data that follows, we will use subsampling to produce 5, 10, 15,
30, 45, and 60 minute test periods.

Figure 1 shows the bandwidth measurements made with this experimental version of Gloperf between sleipnir.aero.org
(near Los Angeles) and yukon.mcs.anl.gov (near Chicago) for approximately a 48 hour period over Los Nettos. While
these time series are interleaved (and measure the network at slightly different times), the 1-sec. tests are clearly the lowest
on average and longer test times produce a higher measured bandwidth.

The histograms of these time series in Figure 2 clearly show this trend, i.e., TCP coming out of slow start. These
histograms also show that the 5, 7, and 10-sec. tests all share the same mode (even though the 10-sec. tests have the
highest arithmetic mean by a slight margin). This indicates that tests longer than 5-sec. are not necessary on this link in
accordance with the bandwidth-delay product governing TCP slow start.

To assess the “error” in these time series requires some notion of what the “true” values are compared to what Gloperf
leads us to believe they are. This requires some form of prediction model based on Gloperf data. The simplest prediction
model assumes that the last measurement predicts the next and the error is the difference between them. Hence, by
using the last measurement predictor, we can assess the error by computing the Mean Absolute Error (MAE) and assess
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Figure 1: Representative experimental bandwidth data with stationary means; sleipnir.aero.org to yukon.mcs.anl.gov.
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Figure 2: Histograms of sleipnir-yukon data.
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Figure 3: sleipnir-yukon MAE/MSE as a function of test time and test period, plotted as a function of test time.

the variability by comparing that with the Mean Squared Error (MSE). We can also compute the MAE and MSE for
subsampled data. We note that when subsampling every n-th point, there are n different possible subsampled time series.
Hence, for a given subsampling period, we compute the MAE and MSE for every possible series. While the distribution
of these MAEs is of great importance, for the sake of simplifying the following graphs we only present their arithmetic
mean. (MAE distribution is shown for the last, and longest, set of data.)

Using this method of computation, the MAE and MSE could be plotted as a surface with test time and test period as
the independent variables. We will, however, present the data as a family of curves projected into one plane or the other.
Hence, Figure 3 shows the MAE/MSE as a function of test time and Figure 4 shows the same data as a function of test
period. Figure 4 shows that the test period has virtually no effect on the MAE. Testing once an hour is just as accurate as
testing once every five minutes. This is, however, not surprising since the original data have relatively stationary means.
In this situation, infrequent measurement is not only adequate but preferable.

The stability of these traces, however, allows us to see two interesting artifacts in Figure 3. First, the longer test
times “average-out” some of the variability seen in the shorter test times resulting in a significantly lower MAE and MSE.
Individual packet drops and retransmits also have less of an overall effect when the test time is longer. This is corroborated
by the narrower histogram distribution when the test time is longer.

Second, we note an increase in the MAE for the two-second tests. Our current hypothesis concerning this is as
follows. Packet loss is a discrete event and causes a quantized delta in the measured bandwidth. Hence, the measurements
in Figure 1 actually occur in strata as shown by the multi-modal histogram distributions of Figure 2. At two seconds, TCP
is in the process of leaving slow start which causes the strata to be spread out wider, producing a higher MAE. (This is
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Figure 4: sleipnir-yukon MAE/MSE as a function of test time and test period, plotted as a function of test period.
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Figure 5: Representative experimental bandwidth data with non-stationary means; jupiter.isi.edu to yukon.mcs.anl.gov.

shown in the histogram data.) Once out of slow start with a longer test time, the strata are more narrowly constrained and
an individual packet drop has less effect on the overall measured bandwidth, as one would expect.

Of course, not all links are so well-behaved. Hence, Figure 5 shows a similar experiment between jupiter.isi.edu (in
Los Angeles) and yukon.mcs.anl.gov (near Chicago) over the vBNS that exhibits a much more volatile mean. For clarity,
only the 1 and 10-sec. tests are shown. The histograms are shown in Figure 6.

Figure 7 shows the MAE and MSE for these traces by test time using the last measurement predictor. We note that not
only are higher bandwidths achieved on the vBNS, the MAE and MSE are more than proportionally higher. As a sanity
check, we employed a random predictor. This produces random bandwidth predictions with a uniform distribution across
the range exhibited by the entire trace. Figure 7 shows that even in a “noisy” environment, infrequent measurements still
produce a much better bandwidth estimate than random guessing.

One of the obvious drawbacks of the last measurement predictor is that an individual measurement may not be repre-
sentative of the subsequent “true” bandwidth, i.e., the measurement happened to hit a transient peak or trough in the trace.
Indeed, it is possible to consider infrequent measurements not as part of a time series but rather as members of a popula-
tion sample. This means that a simple arithmetic mean might predict bandwidth just as well as the last measurement, if
not better. In a long-lived operational environment, however, an extremely large number of samples would eventually be
collected and a new measurement would never perceptibly change the mean. Hence, much like the venerable Unix load
average, a running exponential average could be used to track the current “load” based on a weighted sum of the current
measurement and the previous “load”. This allows current peaks and troughs in the trace to be weighted against recent
past measurements with an exponential decay.
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Figure 6: Histogram of jupiter-yukon data.
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Figure 7: jupiter-yukon MAE/MSE by test time, using a last-measurement predictor and a random predictor.
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Figure 8: jupiter-yukon MAE/MSE by test time, using a last-measurement predictor and an exponential average predictor.
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Figure 9: jupiter-yukon MAE/MSE by test period, using an exponential average predictor.
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Figure 10: MAE/MSE of subsampled NWS trace by test period, using a last-measurement predictor and an exponential
average predictor.

Figure 8 shows the MAE and MSE for both the last measurement predictor and an exponential average predictor with
a weight of 0.35 on the most recent measurement. Work with the Network Weather Service [16] has shown that simple
forecasting techniques such as exponential smoothing can improve prediction accuracy dramatically over the simple use
of monitor data alone. Our work with Gloperf confirms this result emphasizing the need for forecasting in grid computing
settings. In this case, exponential smoothing shows a clear improvement in the prediction error, even for one-hour test
periods. Figure 9 shows the same exponential average data plotted as a function of test period. Once out of slow start, the
MAE only rises approximately 10% from testing every five minutes to testing once an hour, even in a typical environment.

What happens, however, when the test period rises to as much as once every 24 hours? To examine this question, we
used a trace generated by the Network Weather Service that contained 69751 high-frequency tests over a 28.8 day period.
We subsampled this trace to produce a trace with 7163 tests at a test period of 300 seconds over the same 28.8 days.
Figure 10 presents the MAE and MSE of this trace for test periods of 5, 10, 15, 30, 45, 60 minutes and 2, 4, 8, 12, 24
hours. Beyond one hour, the MAE does start to rise more quickly. Nonetheless, the average worst error measuring once a
day only amounts to less than 20% of the actual bandwidth observed.

One interesting aspect of the trace data is that interleaved time series do not produce the same MAE and MSE error
readings. Indeed, two series shifted only by one measurement can generate different overall forecasting errors. We do not,
as yet, understand fully the nature of this difference, although we conjecture that it may be due to “hidden” periodicities
in the series. A frequency analysis does not expose any such periodicities, however, leading us to consider other possible
causes. Therefore, we show the average MAE and MSE for each point in Figure 10.

To understand the extent of this variation, we histogram the MAE and MSE readings for adjacent subsamples in
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Figure 11: Histogram of exponential predictor MAEs from subsampled NWS trace.
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Figure 11. Despite the variability, the worst-case sequence with a one-day measurement period produced an error of only
slightly worse than 25% of the actual bandwidth observed. Also note that the 24 hour period exhibits the widest degree
of variability leading is to conjecture that cyclic frequency components are the cause of the variability.

Performance Discussion.

While these data are only representative, they indicate that longer test periods to not erode accuracy as measured by the
MAE to a point where the data is completely useless. (We are collecting longer Gloperf traces from a variety of national
and international hostpairs to further corroborate our results.) While longer test times tend to average-out variations, they
also increase the intrusiveness as measured by the total number of bytes transferred per hour. We note that the overhead
of Gloperf in total number of bytes transferred per hour is linearly related to the test period. Hence, going from a 5 minute
to 60 minute test period represents a 12x reduction in testing data volume. Going from 1 hour to 24 hours represents a
24x reduction. We note that on fast, under-utilized links, Gloperf can push a larger data volume than is necessary. As an
enhancement, Gloperf could possibly limit test time based on the bandwidth-delay product for the link under test. This
would limit the data volume transferred in a test but also ensure that TCP has come out of slow start.

This brings up a larger issue: what is the best metric for “intrusiveness”? The number of bytes transferred? The time
spent sending additional traffic? The bandwidth actually denied to other flows? The congestion precipitated at routers
along the path? The answer is “all of the above”. Unfortunately not all of these metrics are easy to capture. A low-level
infrastructure that could capture items such as bandwidth denied or congestion at every router on a path would be difficult
to implement and deploy. While such an infrastructure could produce useful insights, most cost comparisons will continue
to be done with metrics that are approximate and easy to obtain.

We also reiterate that Gloperf is primarily a sensor and collection mechanism; it does not “contain” any prediction
models itself. We have, however, used simple last measurement and exponential average predictors to establish that
infrequent measurements, as provided by Gloperf, can be used to “predict” network performance with an acceptable
amount of error. We note that other, more accurate prediction models are certainly possible, e.g., prediction of diurnal and
even weekly cycles, that are based on historical data and other known facts about a particular link.

5 Conclusions and Future Work

We have presented a very simple network performance monitoring system for grid computations. Infrequent measure-
ments are very unintrusive and the accuracy does not degrade to where they cannot be used for purposes such as initial
resource discovery and allocation in a grid computing environment. Infrequent measurements will, of course, completely
miss high-frequency volatility in network performance. Applications that cannot tolerate such volatility can attempt to
adapt by using self-measurement, or high-frequency measurements as in the NWS, or ultimately relying on a bandwidth
reservation mechanism that controls the volatility directly.

While the initial deployment of Gloperf has been kept simple, some further developments are possible. On-demand
measurements would allow applications to probe network resources to get very fresh data. Automatic group discovery
is another topic. Contention has not been a problem with such infrequent measurements. If it ever becomes a problem,
however, some form of arbitration will have to be implemented. Finally we recognize some data usability issues. Organiz-
ing Gloperf data based solely on source host is not appropriate for all situations. To alleviate this, we plan to implement
different LDAP-based service providers that are logically indexed as being part of the MDS but are free to acquire and
manage the raw data and any derived data in the most appropriate way for the service they provide.
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