The Nexus Task-parallel Runtime System*

lan Foster

Math & Computer Science
Argonne National Laboratory
Argonne, 1L 60439

foster@mecs.anl.gov

Abstract

A runtime system provides a parallel language
compiler with an interface to the low-level facilities
required to support interaction between concurrently
executing program components. Nexus is a portable
runtime system for task-parallel programming lan-
guages. Distinguishing features of Nexus include its
support for multiple threads of control, dynamic pro-
cessor acquisition, dynamic address space creation, a
global memory model via interprocessor references,
and asynchronous events. In addition, it supports het-
erogeneity at multiple levels, allowing a single compu-
tation to utilize different programming languages, ex-
ecutables, processors, and network protocols. Nexus
is currently being used as a compiler target for two
task-parallel languages: Fortran M and Composi-
tional C+4. In this paper, we present the Nexus
design, outline techniques used to implement Nexus
on parallel computers, show how it is used in compil-
ers, and compare its performance with that of another
runtime system.

1 Introduction

Compilers for parallel languages rely on the exis-
tence of a runtime system. The runtime system de-
fines the compiler’s view of a parallel computer: how
computational resources are allocated and controlled
and how parallel components of a program interact,
communicate and synchronize with one another.

Most existing runtime systems support the single-
program, multiple-data (SPMD) programming model

*This work was supported by the Office of Scientific Com-
puting, U.S. Department of Energy, under Contract W-31-
109-Eng-38, and by the National Science Foundation’s Center
for Research in Parallel Computation under Contract CCR-
8809615.

Carl Kesselman

Beckman Institute

Caltech
Pasadena, CA 91125

carl@compbio.caltech.edu

Steven Tuecke

Math & Computer Science
Argonne National Laboratory
Argonne, 1L 60439

tuecke@mcs.anl.gov

used to implement data-parallel languages. In this
model, each processor in a parallel computer executes
a copy of the same program. Processors exchange
data and synchronize with each other through calls
to the runtime library, which typically is designed to
optimize collective operations in which all processors
communicate at the same time, in a structured fash-
ion. A major research goal in this area 1s to identify
common runtime systems that can be shared by a va-
riety of SPMD systems.

Task-parallel computations extend the SPMD pro-
gramming paradigm by allowing unrelated activities
to take place concurrently. The need for task par-
allelism arises in time-dependent problems such as
discrete-event simulation, in irregular problems such
as sparse matrix problems, and in multidisciplinary
simulations coupling multiple, possibly data-parallel,
computations. Task-parallel programs may dynam-
ically create multiple, potentially unrelated, threads
of control. Communication and synchronization are
between threads, rather than processors, and can oc-
cur asynchronously among any subset of threads and
at any point in time. A compiler often has little
global information about a task-parallel computation,
so there are few opportunities for exploiting optimized
collective operations.

The design of Nexus is shaped both by the require-
ments of task-parallel computations and by a desire
to support the use of heterogeneous environments,
in which heterogeneous collections of computers may
be connected by heterogeneous networks. Other de-
sign goals include efficiency, portability across diverse
systems, and support for interoperability of different
compilers. It 18 not yet clear to what extent these var-
ious goals can be satisfied in a single runtime system:
in particular, the need for efficiency may conflict with
the need for portability and heterogeneity. Later in
this paper, we present some preliminary performance
results that address this question.



As we describe in this paper, Nexus is already
in use as a compiler target for two task-parallel
languages: Fortran M [7] (FM) and Compositional
C++ [3] (CCH+). Our initial experiences have been
gratifying in that the resulting compilers are consider-
ably simpler than earlier prototypes that did not use
Nexus services.

Space does not permit a detailed discussion of re-
lated work. However, we note that the Chant sys-
tem [9] has similar design goals (but adopts different
solutions).

2 Nexus Design and Implementation

Before describing the Nexus interface and imple-
mentation, we review the requirements and assump-
tions that motivated the Nexus design.

Nexus is intended as a general-purpose runtime sys-
tem for task-parallel languages. While it currently
contains no specialized support for data parallelism,
data-parallel languages such as pC++ and HPF can
in principle also use it as a runtime layer. Nexus is de-
signed specifically as a compiler target, not as a library
for use by application programmers. Consequently,
the design favors efficiency over ease of use.

We believe that the future of parallel computing
lies in heterogeneous environments in which diverse
networks and communications protocols interconnect
PCs, workstations, small shared-memory machines,
and large-scale parallel computers. We also expect
heterogeneous applications combining different pro-
gramming languages, programming paradigms, and
algorithms to become widespread.

Nexus abstractions need to be close to the hard-
ware, in order to provide efficiency on machines that
provide appropriate low-level support. Operations
that occur frequently in task-parallel computations,
such as thread creation, thread scheduling, and com-
munication, need to be particularly fast. At the same
time, Nexus abstractions must be easily layered on
top of existing runtime mechanisms, so as to provide
portability to machines that do not support Nexus ab-
stractions directly. Communication mechanisms that
were considered in designing Nexus include message
passing, shared memory, distributed shared memory,
and message-driven computation.

Finally, Nexus is intended to be a lingua franca
for compilers, promoting reuse of code between com-
piler implementation as well as interoperability be-
tween code generated by different compilers.

Important issues purposefully not addressed in the
initial design include reliability and fault tolerance,

real-time issues, global resource allocation, replica-
tion, data and code migration, and scheduling poli-
cies. We expect to examine these issues in future re-
search.

2.1 Core Abstractions

The Nexus interface is organized around five basic
abstractions: nodes, contexts, threads, global point-
ers, and remote service requests. The associated ser-
vices provide direct support for light-weight thread-
ing, address space management, communication, and
synchronization [8]. A computation consists of a set
of threads, each executing in an address space called
a contexrt. An individual thread executes a sequential
program, which may read and write data shared with
other threads executing in the same context. It can
also generate asynchronous remote service requests,
which invoke procedures in other contexts.

Nodes. The most basic abstraction in Nexus is that
of a node. A node represents a physical processing
resource. Consequently, the set of nodes allocated
by a program determines the total processing power
available to that computation. When a program using
Nexus starts, an initial set of nodes is created; nodes
can also be added or released dynamically. Programs
do not execute directly on a node. Rather, as we will
discuss below, computation takes place in a context,
and it 1s the context that is mapped to a node.

Nexus provides a set of routines to create nodes on
named computational resources, such as a symmet-
ric shared-memory multiprocessor or a processor in a
distributed-memory computer. A node specifies only
a computational resource and does not imply any spe-
cific communication medium or protocol. This nam-
ing strategy is implementation dependent; however,
a node can be manipulated in an i1mplementation-
independent manner once created.

Contexts. Computation takes place within an ob-
ject called a context. Each context relates an exe-
cutable code and one or more data segments to a
node. Many contexts can be mapped onto a single
node. Contexts cannot be migrated between nodes
once created.

Contexts are created and destroyed dynamically.
We anticipate context creation occurring frequently:
perhaps every several thousand instructions. Con-
sequently, context creation should be inexpensive:
certainly less expensive then process creation under
Unix. This is feasible because unlike Unix processes,



contexts do not guarantee protection. We note that
the behavior of concurrent I/O operations within con-
texts is currently undefined.

Compiler-defined initialization code is executed au-
tomatically by Nexus when a context is created. Once
initialization is complete, a context is inactive until a
thread is created by an explicit remote service request
to that context. The creation operation is synchro-
nized to ensure that a context is not used before it is
completely initialized. The separation of context cre-
ation and code execution is unique to Nexus and 1s a
direct consequence of the requirements of task paral-
lelism. All threads of control in a context are equiva-
lent, and all computation is created asynchronously.

Threads. Computation takes place in one or more
threads of control. A thread of control must be cre-
ated within a context. Nexus distinguishes between
two types of thread creation: within the same con-
text as the currently executing thread and in a differ-
ent context from the currently executing thread. We
discuss thread creation between contexts below.

Nexus provides a routine for creating threads
within the context of the currently executing thread.
The number of threads that can be created within a
context is limited only by the resources available. The
thread routines in Nexus are modeled after a subset
of the POSIX thread specification [10]. The opera-
tions supported include thread creation, termination,
and yielding the current thread. Mutexes and con-
dition variables are also provided for synchronization
between threads within a context.

Basing Nexus on POSIX threads was a pragmatic
choice: because most vendors support POSIX threads
(or something similar), it allows Nexus to be imple-
mented using vendor-supplied thread libraries. The
drawback to this approach is that POSIX was de-
signed as an application program interface, with fea-
tures such as real-time scheduling support that may
add overhead for parallel systems. A lower-level inter-
face designed specifically as a compiler target would
most likely result in better performance [1] and will
be investigated in future research.

To summarize, the mapping of computation to
physical processors is determined by both the map-
ping of threads to contexts and the mapping of con-
texts to nodes. The relationship between nodes, con-
texts, and threads is illustrated in Fig. 1.

Global Pointers. Nexus provides the compiler
with a global namespace, by allowing a global name
to be created for any address within a context. This

T T
v N7

Context Context Context
\ Y v
N O D E N O D E

Figure 1: Nodes, Contezts, and Threads

name is called a global pointer. A global pointer can
be moved between contexts, thus providing for a mov-
able intercontext reference. Global pointers are used
in conjunction with remote service requests to cause
actions to take place on a different context. The use
of global pointers was motivated by the following con-
siderations.

o While the data-parallel programming model nat-
urally associates communication with the section
of code that generates or consumes data, task-
parallel programs need to associate the commu-
nication with a specific data structure or a spe-
cific piece of code. A global namespace facilitates
this.

e Dynamic behaviors are the rule in task-parallel
computation. References to data structures need
to be passed between contexts.

e Data structures other than arrays need to be
supported. A general global pointer mechanism
facilitates construction of complex, distributed
data structures.

e Distributed-memory computers are beginning to
provide direct hardware support for a global
shared namespace. We wanted to reflect this
trend in Nexus.

Global pointers can be used to implement data
structures other than C pointers. For example, the
FM compiler uses them to implement channels.

Remote Service Requests. A thread can request
that an action be performed in a remote context by
issuing a remote service request. A remote service re-
quest results in the execution of a special function,
called a handler, in the context pointed to by a global
pointer. The handler is invoked asynchronously in
that context; no action, such as executing a receive,



needs to take place in the context in order for the
handler to execute. A remote service request is not
a remote procedure call, because there is no acknowl-
edgement or return value from the call, and the thread
that initiated the request does not block.

Remote service requests are similar in some re-
spects to active messages [11]. They also differ in
significant ways, however. Because active message
handlers are designed to execute within an interrupt
handler, there are restrictions on the ways in which
they can modify the environment of a node. For ex-
ample, they cannot call memory allocation routines.
While these restrictions do not hinder the use of ac-
tive messages for data transfer, they limit their utility
as a mechanism for creating general threads of con-
trol. In contrast, remote service requests are more
expensive but less restrictive. In particular, they can
create threads of control, and two or more handlers
can execute concurrently.

During a remote service request, data can be trans-
ferred between contexts by the use of a buffer. Data
is inserted into a buffer and removed from a buffer
through the use of packing and unpacking functions
similar to those found in PVM and MPI [5, 6]. Invok-
ing a remote service request is a three-step process:

1. The remote service request is initialized by pro-
viding a global pointer to an address in the desti-
nation context and the identifier for the handler
in the remote context. A buffer is returned from
the initialization operation.

2. Data to be passed to the remote handler is placed
into the buffer. The buffer uses the global pointer
provided at initialization to determine if any data
conversion or encoding is required.

3. The remote service request is performed. In
performing the request, Nexus uses the global
pointer provided at initialization to determine
what communication protocols can be used to
communicate with the node on which the con-
text resides.

The handler 1s invoked in the destination context
with the local address component of the global pointer
and the message buffer as arguments. In the most gen-
eral form of remote service request, the handler runs
in a new thread. However, a compiler can also specify
that a handler is to execute in a preallocated thread
if it knows that that handler will terminate without
suspending. This avoids the need to allocate a new
thread; in addition, if a parallel computer system al-
lows handlers to read directly from the message inter-
face, it avoids the copying to an intermediate buffer

that would otherwise be necessary for thread-safe ex-
ecution. As an example, a handler that implements
the get and put operations found in Split-C [4] can
take advantage of this optimization.

2.2 Implementation

In order to support heterogeneity, the Nexus im-
plementation encapsulates thread and communication
functions in thread and protocol modules, respec-
tively, that implement a standard interface to low-
level mechanisms (Fig. 2). Current thread modules
include POSIX threads, DCE threads, C threads, and
Solaris threads. Current protocol modules include lo-
cal (intracontext) communication, TCP socket, and
Intel NX message-passing. Protocol modules for
MPI, PVM, SVR4 shared memory, Fiber Channel,
IBM’s EUT message-passing library, AAL-5 (ATM
Adaptation Layer 5) for Asynchronous Transfer Mode
(ATM), and the Cray T3D’s get and put operations
are planned or under development.

More than one communication mechanism can be
used within a single program. For example, a con-
text A might communicate with contexts B and C us-
ing two different communication mechanisms if B and
C' are located on different nodes. This functionality
is supported as follows. When a protocol module is
initialized, it creates a table containing the functions
that implement the low-level interface and a small de-
scriptor that specifies how this protocol is to be used.
(Protocol descriptors are small objects: typically 4-5
words, depending on the protocol.) When a global
pointer 1s created in a context, a list of descriptors for
the protocols supported by this context is attached
to the global pointer. The protocol descriptor list is
part of the global pointer and is passed with the global
pointer whenever it i1s transferred between contexts.
A recipient of a global pointer can compare this pro-
tocol list with 1ts local protocols to determine the best
protocol to use when communicating on that global
pointer.

Although some existing message-passing systems
support limited network heterogeneity, none do so
with the same generality. For example, PVM3 al-
lows processors in a parallel computer to communi-
cate with external computers by sending messages to
the pvmd daemon process which acts as a message for-
warder [5]. However, this approach is not optimal on
machines such as the IBM SP1 and the Intel Paragon,
whose nodes are able to support TCP directly, and it
limits PVM programs to using just one protocol in
addition to TCP. P4 has several special multiprotocol
implementations, such as a version for the Paragon



Nexus Interface
Nexus Protocol
Nexus
Module Interface
Thread | Other Nexus Services
Protocol Protocol Module
Module 1 Module 2
Network Network Thread )
Protocol 1 Protocol 2 Library Other System Services

Figure 2: Structure of Nexus Implementation

that allows the nodes to use both NX and TCP [2].
But it does not allow arbitrary mixing of protocols.

3 Performance Studies

In this section, we present results of some prelim-
inary Nexus performance studies. We note that the
thrust of our development effort to date has been to
provide a correct implementation of Nexus. No tuning
or optimization work has been done at all. In addi-
tion, the operating system features used to implement
Nexus are completely generic: we have not exploited
even the simplest of operating system features, such as
nonblocking 1/0. Consequently, the results reported
here should be viewed as suggestive of Nexus perfor-
mance only, and are in no way conclusive.

The experiments that we describe are designed to
show the cost of the Nexus communication abstrac-
tion as compared to traditional send and receive. Be-
cause Nexus-style communication is not supported on
current machines, Nexus is implemented with send
and receive. Thus, Nexus operations will have over-
head compared to using send and receive. Our objec-
tive 18 to quantify this overhead. We note that sup-
port for Nexus can be build directly into the system
software for a machine, in which case Nexus perfor-
mance could meet or even exceed the performance of
a traditional process-oriented send and receive based
system. (We have started a development effort with
the IBM T.J. Watson Research Center to explore this
possibility.)

The experiments reported here compare the per-
formance of a CC++ program compiled to use Nexus
and a similar C++ program using PVM [5] for com-
munication. The CC++ program uses a function call
through a CC++ global pointer to transfer an array of
double-precision floating-point numbers between two
processor objects (Nexus contexts). We measure the

cost both with remote thread creation and when a pre-
allocated thread is used to execute the remote service
request. The PVM program uses send and receive to
transfer the array. Both systems are compiled with
-03 using the Sun unbundled C and C++ compilers;
neither performs data conversion. In both cases the
data starts and finishes in a user-defined array. This
array 1s circulated between the two endpoints repeat-
edly until the accumulated execution time is sufficient
to measure accurately. Execution time is measured
for a range of array sizes. The results of these exper-
iments are summarized in Fig. 3.

We see that despite its lack of optimization, Nexus
is competitive with PVM. Execution times are con-
sistently lower by about 15 per cent when remote ser-
vice requests are executed in a preallocated thread;
this indicates that both latency and per-word trans-
fer costs are lower. Not surprisingly, execution times
are higher when a thread is created dynamically: by
about 40 per cent for small messages and 10 to 20 per
cent for larger messages.

4 Summary

Nexus is a runtime system for compilers of task-
parallel programming languages. It provides an in-
tegrated treatment of multithreading, address space
management, communication, and synchronization
and supports heterogeneity in architectures and com-
munication protocols.

Nexus is operational on networks of Unix work-
stations communicating over TCP/IP networks, the
IBM SP1, and the Intel Paragon using NX; it is being
ported to other platforms and communication proto-
cols. Nexus has been used to implement two very dif-
ferent task-parallel programming languages: CC++
and Fortran M. In both cases, the experience with
the basic abstractions has been positive: the overall



le+06

g 100000
(O]
£
|_
o)
% 10000
=
1000 ‘

Nexus (remote thread) ——
Nexus (no remote thread) -
PVYM3 =

1 10

100

1000 10000

Message Length (double floats)

Figure 3: Round-trip time as a function of message size between two Sun 10 workstations under Solaris 2.3 using
an unloaded Ethernet.

complexity of both compilers was reduced consider-
ably compared to earlier prototypes that did not use
Nexus facilities. In addition, we have been able to
reuse code and have laid the foundations for interop-
erability between the two compilers. The preliminary
performance studies reported in this paper suggest
that Nexus facilities are competitive with other run-
time systems.

References

(1]

[4]

Peter Buhr and R. Stroobosscher. The psystem:
Providing light-weight concurrency on shared-
memory multiprocessor systems running Unix.
Software Practice and FErperience, pages 929-
964, September 1990.

R. Butler and E. Lusk. Monitors, message, and
clusters: The p4 parallel programming system.
Parallel Computing (to appear), 1994.

K. Mani Chandy and Carl Kesselman. CC++: A
declarative concurrent object oriented program-
ming notation. In Research Directions in Object
Oriented Programming. MIT Press, 1993.

David Culler et al. Parallel programmingin Split-
C. In Proc. Supercomputing ’93. ACM, 1993.

[5]

[6]

[7]

J. Dongarra, G. Geist, R. Manchek, and V. Sun-
deram. Integrated PVM framework supports het-
erogeneous network computing. In Computers in

Physics, April 1993.

Message Passing Interface Forum. Document for
astandard messge-passing interface, March 1994.
(available from netlib).

Tan Foster and K. Mani Chandy. Fortran M:
A language for modular parallel programming.
J. Parallel and Distributed Computing, 1994. to
appear.

Tan Foster, Carl Kesselman, Robert Olson, and
Steve Tuecke. Nexus: An interoperability toolkit
for parallel and distributed computer systems.
Technical Report ANL/MCS-TM-189, Argonne
National Laboratory, 1994.

M. Haines, D. Cronk, and P. Mehrotra. On
the design of Chant: A talking threads package.
Technical Report 94-25, ICASE, 1994.

IEEE. Threads extension for portable operating
systems (draft 6), February 1992.

Thorsten von Ficken, David Culler, Seth Copen
Goldstein, and Klaus Erik Schauser. Active mes-
sages: a mechanism for integrated communica-
tion and computation. In Proc. 19th Int’l Sym-
postum on Computer Architecture, May 1992.



