
Wide-Area Implementation

of the Message Passing Interface

Ian Foster, Jonathan Geisler, William Gropp,

Nicholas Karonis, Ewing Lusk, George Thiruvathukal, Steven Tuecke

Argonne National Laboratory

Argonne, IL 60439, U.S.A.

ffoster,geisler,gropp,karonis,lusk,thiruvat,tueckeg@mcs.anl.gov

Abstract

The Message Passing Interface (MPI) can be used as a portable, high-performance program-
ming model for wide-area computing systems. The wide-area environment introduces challeng-
ing problems for the MPI implementor, due to the heterogeneity of both the underlying physical
infrastructure and the software environment at di�erent sites. In this article, we describe an MPI
implementation that incorporates solutions to these problems. This implementation has been
constructed by extending the Argonne MPICH implementation of MPI to use communication
services provided by the Nexus communication library and authentication, resource allocation,
process creation/management, and information services provided by the I-Soft system (initially)
and the Globus metacomputing toolkit (work in progress). Nexus provides multimethod com-
munication mechanisms that allow multiple communication methods to be used in a single
computation with a uniform interface; I-Soft and Globus provided standard authentication,
resource management, and process management mechanisms. We describe how these various
mechanisms are supported in the Nexus implementation of MPI and present performance results
for this implementation on multicomputers and networked systems. We also discuss how more
advanced services provided by the Globus metacomputing toolkit are being used to construct a
second-generation wide-area MPI.

1 Introduction

Wide area supercomputing or metacomputing environments couple geographically distributed re-
sources to provide broader access to supercomputing capabilities or to enable qualitatively new
classes of high-performance applications [2, 11, 12, 16]. These environments combine aspects of
traditional distributed and parallel computing systems. Metacomputing systems, like distributed
systems, must deal with heterogeneity and dynamic behaviors; as in parallel computing, perfor-
mance requirements often demand careful structuring of computation and communication.

A variety of \nontraditional" programming models (from the parallel computing viewpoint)
have been proposed and used for metacomputing applications, including parallel object-oriented
programming [23, 28], CORBA, and specialized shared memory models [27]. However, while these
models have many useful properties, it is clear that there is a continuing important role for message
passing [15, 21]. Message passing provides a higher-level view of communication than the TCP/IP
sockets often used in early metacomputing prototypes, while preserving for the programmer a high
degree of control over how and when communication occurs.

The wide area environment introduces a number of new problems for the implementor of
message-passing systems. Because applications must often execute on heterogeneous collections

1

of endsystem computers and associated networks, e�cient message-passing implementations may
need to utilize di�erent communication methods for di�erent communications. For ease of use, it is
desirable that the message-passing system be able to negotiate with diverse resource management,
process management, and security services in order to start programs on computers that span
multiple administrative domains. Key to these communication and startup challenges is a need
for accurate, up-to-date information about the structure and state of the various components of a
metacomputing system. This information is also needed for e�cient implementation of collective
operations and speci�c application structures.

In this article, we report on our experiences implementing the Message Passing Interface
(MPI) [26, 21] for metacomputing systems. The MPI standard allows programmers to write
message-passing programs without concern for low-level details such as machine type, network
structure, low-level protocols, etc. Our implementation addresses communication, startup, and
information requirements by adapting the Argonne/Mississippi State MPICH library [20] to use
specialized metacomputing services. MPICH provides a portable, high-performance implementa-
tion of MPI that incorporates some support for heterogeneous environments (e.g., the p4 device
supports heterogeneous networks of workstations), but provides only limited support for wide-area
metacomputing environments. Our wide area MPICH uses communication services provided by
the Nexus communication library and startup and information services provided by the I-WAY
metacomputing environment (in a �rst phase) and the Globus metacomputing toolkit (in a second
phase). The result is a system that allows programmers to use simple, standard commands to
run MPI programs in a variety of metacomputing environments (freely combining heterogeneous
workstation and massively parallel resources), while making e�cient use of underlying networks.

The rest of this article is organized as follows. Sections 2 and 3 introduce Nexus and MPICH,
and explain how Nexus services are used to implement MPICH communication structures. Section 4
explains how startup and information issues have been addressed in the I-WAY and Globus contexts.
In Section 5 we discuss outstanding issues and ideas for further development. Finally, we review
related work in Section 6 and summarize in Section 7.

2 Nexus

We provide a brief introduction to the Nexus communication library that we use to implement MPI.
Nexus provides a low-level interface to multithreading and communication mechanisms in homoge-
neous and heterogeneous systems. It is designed for use by library writers and compiler writers; in
addition to MPI, systems that use Nexus facilities include parallel languages and communication
libraries.

2.1 Nexus Overview

Nexus is structured in terms of �ve basic abstractions: nodes, contexts, threads, communication
links, and remote service requests. A computation executes on a set of nodes and consists of a
set of threads, each executing in an address space called|confusingly for MPI users|a context.
(For the purposes of this article, it su�ces to assume that a context is equivalent to a process.)
An individual thread executes a sequential program, which may read and write data shared with
other threads executing in the same context. The communication link provides a global name space
for objects, while the remote service request (RSR) is used to initiate communication and invoke
remote computation. Communication ows from a communication startpoint to a communication
endpoint. A startpoint is bound to an endpoint to form a communication link. Many startpoints can

2

SP

SP

SP

EP
0 1 2

EP

Figure 1: The communication link and its role in communication. The �gure shows three address
spaces; three startpoints in address space 1 reference endpoint in address spaces 0 and 2.

be bound to a single endpoint, in which case incoming communication is merged as in typical point-
to-point message passing systems. Similarly, many endpoints can be bound to a single startpoint,
resulting in a multicast communication pattern. Both startpoints and endpoints can be created
dynamically; the startpoint has the additional property that it can be moved between processors
using the communication operations we now describe.

Communication links are used in conjunction with asynchronous remote service requests (RSRs)
which invoke actions on remote objects. An RSR is speci�ed by providing a startpoint, an RSR
handler identi�er and a data bu�er, which is constructed using PVM [15] style put routines. Issuing
an RSR causes the data bu�er to be transferred from the startpoint to the bound endpoint, after
which the routine speci�ed by the handler is executed, potentially in a new thread of control. Both
the data bu�er and endpoint-speci�c data are available to the RSR handler.

Key to the communication link's utility is the mobility of the startpoint. A process can bind a
startpoint to a local endpoint and then communicate that startpoint to other processes, providing
the other processes with a handle that they can use to perform RSRs back to the local endpoint. A
process can create multiple handles, referring to di�erent endpoints, hence allowing communications
intended for di�erent purposes to be distinguished.

The Active Messages (AM) [25] and Fast Messages (FM) [29] communication systems are based
on asynchronous handler invocation mechanisms similar to those used in Nexus. The latest AM
speci�cation introduces an endpoint construct with some similarities to the Nexus endpoint. How-
ever, the AM endpoint is a more heavyweight structure, incorporating both startpoint and endpoint
functionality. Also, AM handlers are used in request/reply pairs, rather than in a one-sided fashion
as in Nexus.

2.2 Multimethod Communication

The Nexus features that are most important in a metacomputing environment are those that sup-
port multimethod communication [8]. These mechanisms are based around the startpoint construct,
which is used to maintain information about the methods that can be used to perform commu-
nications directed to a particular remote location. Simple protocols allow this information to be
propagated from one node to another and provide a framework that supports both automatic and
manual selection from among available communication methods.

Nexus incorporates automatic con�guration mechanisms that allow it to use information ob-
tained from an information service to determine which startup mechanisms, network interfaces, and

3

communication methods to use in di�erent situations. These mechanisms allow Nexus programs
to execute unchanged in di�erent environments, with communication methods selected according
to default rules, depending on the source and destination of the message being sent. For example,
automatic selection within Nexus RSRs results in communications being performed with IBM's
Message Passing Library (MPL) within an IBM SP2 and with TCP/IP between computers. Man-
ual selection is also supported, for example allowing selection of specialized ATM protocols or
unreliable transport protocols when appropriate.

Automatic con�guration makes sense only if we have access to up-to-date information. We
discuss below the techniques used to create and maintain this information.

3 Implementing MPI Communication

We �rst review important features of MPI and of the MPICH implementation on which this work
is based.

The Message Passing Interface de�nes a standard set of functions for interprocess communi-
cation [26]. It de�nes functions for sending messages from one process to another (point-to-point
communication), for communication operations that involve groups of processes (collective com-
munication, such as reduction), and for obtaining information about the environment in which a
program executes (enquiry functions). The communicator construct combines a group of processes
and a unique tag space and can be used to ensure that communications associated with di�erent
parts of a program are not confused.

MPICH [20] is a portable, high-performance implementation of MPI. It is structured in terms of
an abstract device interface (ADI). The ADI de�nes low-level communication-related functions that
can be implemented in di�erent ways on di�erent machines [17, 18, 19]. The Nexus implementation
of MPI is constructed by providing a Nexus implementation of this device. The following discus-
sion reects the second-generation ADI, ADI-2, used in the latest Nexus-based implementation of
MPICH, rather than the �rst-generation ADI (ADI-1) used in early implementations [10].

3.1 The MPICH Abstract Device Interface

Figure 2 illustrates the structure of the MPICH implementation of MPI. Higher-level functions
such as those relating to communicators and collective operations are implemented by a device-
independent library, de�ned in terms of point-to-point communication functions provided by the
ADI. To achieve high performance, the ADI provides a rich set of communication functions support-
ing di�erent communication modes. A typical implementation of the ADI will map some functions
directly to low-level mechanisms and implement others by calling services provided by the common
reference ADI implementation. The mapping of MPICH functions to ADI mechanisms is achieved
in part via macros and preprocessors, not function calls. Hence, the overhead associated with this
organization is often small or nonexistent [20].

The ADI provides a fairly high-level abstraction of a communication device: for example, it
assumes that the device handles the bu�ering and queuing of messages. At the same time, it
permits a high degree of control over how messages are constructed, avoiding unnecessary copying
that resulted in ADI-1 when assembling messages from several components, translating between
di�erent data representations, or implementing \posted" receives. The key to this exibility and
e�ciency is that the device is made responsible for datatype management. For example, the device
is required to implement (either by using the reference implementation or through custom routines)
MPID SendDatatype and MPID IsendDataType functions that implement blocking and non-blocking
send forms, respectively. These routines are responsible for handling MPI datatypes, which are

4

M P I C H

Channel Device

A D I

p4
other
devices N e x u s

multiple communication methods

Figure 2: The Nexus implementation of MPI is constructed by de�ning a Nexus instantiation of
the MPICH abstract device interface. In the �rst version of MPICH/Nexus, this was achieved via
an intermediate channel device, as shown here; more recently, a tighter integration of MPICH and
Nexus has been achieved by providing a full Nexus implementation of ADI-2.

represented by tree-structured descriptors that the device traverses to perform bu�er translation
when sending and receiving messages. They can represent noncontiguous data structures. ADI-2
also extends ADI-1 with support for MPI's user-packed bu�ers.

The Nexus implementation of ADI establishes a fully connected set of communication links
connecting the processes involved in the MPI computation. Then, it implements ADI functions as
RSRs to \enqueue message" handlers; these handlers place data in appropriate queues or copy it
directly to a receive bu�er if a receive has already been posted. Implementations of the device on
di�erent computers may use di�erent protocols to perform the data transfer. The best strategy in
many circumstances is to send both the message envelope (tag, communicator, etc.) and data in a
single message, up to a certain data size, and then switch to a two-message protocol so as to avoid
copying data.

As this brief description shows, the mapping from ADI to Nexus is quite direct; the tricky
issues relate mainly to avoiding extra copy operations. The principal overheads relative to MPICH
comprise an additional 32 bytes of Nexus header information, which must be formatted and com-
municated; the decoding and dispatch of the Nexus handler on the receiving node; and a small
number of additional function calls. We quantify these costs below for the MPICH/Nexus initial
implementation, which was based on ADI-1 and the MPICH channel device, a simple interface
designed for quick ports. We expect the latest version of MPICH/Nexus to achieve better per-
formance due to its tighter integration of the two systems, however we were not able to obtain
performance results from that system in time for this paper.

3.2 Performance Experiments

We have conducted a variety of performance experiments to evaluate the performance of both our
multimethod communication mechanisms and the Nexus implementation of MPI. All experiments
were conducted on the Argonne IBM SP2, which is con�gured with Power 1 rather than the more
common Power 2 processors. As noted above, they reect the earlier ADI-1 implementation of
MPICH/Nexus. These processors are connected via a high-speed multistage crossbar switch and are
organized by software into disjoint partitions. Processors in the same partition can communicate

5

0

100

200

300

400

500

600

0 200 400 600 800 1000

T
im

e
(u

se
c)

Size (bytes)

MPI/Nexus MPL+TCP
MPI/Nexus MPL
MPICH--ch_eui

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 200000 400000 600000 800000 1e+06

T
im

e
(u

se
c)

Size (bytes)

MPI/Nexus MPL+TCP
MPI/Nexus MPL
MPICH--ch_eui

Figure 3: One-way message latency as a function of message size, for various implementations of
MPI described in the text. The two graphs show results for small and large messages, respectively.

by using either TCP or IBM's proprietary Message Passing Library (MPL), while processors in
di�erent partitions can communicate via TCP only. Both MPL and TCP operate over the high-
speed switch and can achieve maximum bandwidths of about 36 and 8 MB/sec, respectively. TCP
communications incur the high latencies typically observed in other environments, and so multiple
SP partitions can be used to provide a controlled testbed for experimentation with multimethod
communication in networked systems.

Nexus performance experiments, reported elsewhere [14], reveal that on the Argonne SP2, a
\ping-pong" benchmark that performs RSRs back and forth between two processors obtains a one-
way cost of 82.8 �sec for a zero-length message; in contrast, the SP2's low-level MPL communication
library takes 61.4 �sec. The principal sources of the 21.4 �sec di�erence between NexusLite and
MPL are the setup and communication of the 32-byte header contained in a Nexus message (about
8 �sec) and the lookup and dispatch of the handler on the receive side (about 7 �sec) [14].

We evaluated the performance of the Nexus implementation of MPI by using the ping-pong
benchmark provided by the MPI mpptest program [20]. We executed this program using both
\native" MPICH and the Nexus implementation of MPI, in the later case comparing performance
both with MPL support only and with MPL and TCP support. Figure 3 shows our results.

The graph on the left shows that MPICH takes 83.8 �sec for a zero-length message. This
is comparable with the 82.8 �sec achieved by Nexus alone, suggesting that MPICH and Nexus
are implemented at a similar level of optimization. The Nexus implementation of MPI incurs an
overhead of around 60 �sec for a zero-length message; the graph on the right shows that for larger
messages, the overhead becomes insigni�cant. We have outlined the sources of these overheads
in Section 3.1; as we note there, we believe that many are eliminated by the use of ADI-2. The
jump in the MPICH numbers at 200 bytes is an artifact of the protocols used in the low-level MPL
implementation. Notice the corresponding jump in the Nexus plots at around 170 bytes; the o�set
is due to the additional header information associated with a Nexus RSR.

The MPL+TCP results illustrate some performance issues that can arise when multiple com-
munication methods must be supported. The Nexus implementation used in these experiments
detects incoming communications by using a simple integrated polling scheme. This scheme in-

6

vokes a method-speci�c poll operation for each communication method supported within a process.
This approach can perform badly when the polling operation for one method is much slower than
the others. For example, on many MPPs, the probe operation used to detect communication from
another processor is cheap, while a TCP select is expensive. On the SP2, the mpc status call
used to detect an incoming MPL operation costs 15 microseconds, while a select costs around
100 microseconds. This sort of cost di�erential allows an infrequently used, expensive method to
impose signi�cant overhead on a frequently used, inexpensive method. These overheads can be
reduced by using optimizations that, for example, perform TCP polls less frequently [8].

The results presented in this section are for a nonthreaded implementation of Nexus. The
results for the threaded version of Nexus are similar, except that we see an additional 29.6 �sec
overhead on a zero-length message due to locking needed for thread safety and the use of a probe
rather than a blocking receive to detect incoming messages.

4 Startup and Information Services

We now consider the related problems of initiating MPI computations (\startup") and providing
the information required to select communication and startup mechanisms. We �rst describe the
techniques adopted in the I-WAY software environment and then discuss how di�culties encoun-
tered in that environment can be overcome by using the more sophisticated services provided by
the Globus metacomputing infrastructure toolkit.

4.1 The I-WAY Software Environment

The I-WAY [5] was a wide-area computing experiment conducted throughout 1995 with the goal
of providing a large-scale testbed in which innovative high-performance and geographically dis-
tributed applications could be deployed. The I-WAY linked eleven existing national testbeds based
on ATM (asynchronous transfer mode) technology to interconnect supercomputer centers, virtual
reality research locations, and applications development sites across North America. When demon-
strated at the Supercomputing conference in San Diego in December 1995, the I-WAY network
connected multiple high-end display devices (including immersive CAVETM and ImmersaDeskTM

virtual reality devices [3]); mass storage systems; specialized instruments (such as microscopes and
satellite downlinks); and supercomputers of di�erent architectures, including distributed-memory
multicomputers (IBM SP, Intel Paragon, Cray T3D, etc.), shared-memory multiprocessors (SGI
Challenge, Convex Exemplar), and vector multiprocessors (Cray C90, Y-MP). These devices were
located at seventeen di�erent sites across North America.

The I-WAY distributed supercomputing environment was used by over sixty application groups
for experiments in high-performance computing (e.g., [28]), collaborative design, and the coupling
of remote supercomputers and databases into local environments (e.g., [23]). A primary thrust was
applications that use multiple supercomputers and virtual reality devices to explore collaborative
technologies in which shared virtual spaces are used to perform computational science. For simplic-
ity, the I-WAY standardized on the use of TCP/IP running over ATM Adaptation Layer 5 (AAL5)
for application networking. The need to con�gure both IP routing tables and ATM virtual circuits
in this highly heterogeneous environment was a signi�cant source of implementation complexity.

As part of the I-WAY project, we and others developed a management and application pro-
gramming environment called I-Soft that provided uniform authentication, resource reservation,
process creation, and communication functions across I-WAY resources [9]. These services took
advantage of dedicated I-WAY Point of Presence (I-POP) machines deployed at each participating
site. These machines provided a uniform environment for deployment of management software and

7

also simpli�ed validation of system management and security solutions by serving as a \neutral"
zone under the joint control of I-WAY developers and local authorities.

The I-WAY implementation of MPI was constructed by extending the MPICH/Nexus system
described in the preceding section to use I-Soft services. The I-WAY scheduler was con�gured so
that, when scheduling resources to users, it would also generate a text �le describing the resources
and the network con�guration [9]. Nexus (and hence MPI) could then use this information when
creating a user computation. This support made it possible for a user to allocate a heterogeneous
collection of I-WAY resources and then start a program simply by typing \impirun."

The MPI implementation described here was used extensively for I-WAY application develop-
ment. Experiences emphasized the advantages of the Nexus automatic con�guration mechanisms.
Users could develop MPI applications without any knowledge of low-level details relating to the
compute and network resources included in a computation. These applications would then execute
in heterogeneous environments. For example, in a virtual machine connecting IBM SP and SGI
Challenge computers with both ATM and Internet networks, Nexus uses three di�erent protocols
(IBM proprietary MPL on the SP, shared-memory on the Challenge, and TCP/IP or AAL5 between
computers) and selects either ATM or Internet network interfaces, depending on network status.

4.2 The Globus Metacomputing Toolkit

While successful in the sense that real applications were able to operate in a large-scale wide area
environment, the I-WAY software environment and the I-WAY implementation of MPI also had
signi�cant weaknesses. Many of these issues are being addressed in the Globus project [11, 13],
a multi-institutional e�ort that is developing a set of core services (the Globus toolkit, for which
Nexus is the communication service) for metacomputing applications. In this section, we outline
briey how Globus mechanisms can be used to address a number of de�ciencies noted in our I-WAY
implementation of MPI. We consider in turn information services, security, resource management,
and process management.

Information Services. A signi�cant di�culty revealed by the I-WAY experiment related to the
mechanisms used to generate and maintain the con�guration information used by Nexus. While
resource database entries were generated automatically by the scheduler, the information contained
in these entries (such as network interfaces) had to be provided manually. The discovery, entry,
and maintenance of this information proved to be time consuming, in particular because I-WAY
network status proved to be highly changeable. Clearly, this information should be discovered
automatically whenever possible. Automatic discovery would make it possible, for example, for
a program to use dedicated ATM links if these were available, but to fall back automatically to
shared Internet if the ATM link was discovered to be unavailable.

The Globus Metacomputing Directory Service (MDS) [7] is designed to address these issues.
MDS provides a uniform interface to a wide variety of information about the structure and state of
a metacomputing system. MDS uses the API and data representation de�ned by the Lightweight
Directory Access Protocol (LDAP) [22] to construct a framework within which can be represented
static and dynamic information about computers, networks, etc. In contrast to the text �le used
to communicate information within the I-WAY experiment, MDS provides for a richer set of infor-
mation, dynamic update of data, and distributed maintenance of information. Information about
resources at a particular site can be discovered automatically and/or speci�ed by site administra-
tors, and maintained locally at that site. Services such as the Network Weather Service [30] can be
used to determine the instantaneous status of network links.

8

Authentication and Resource Management. I-Soft provided single sign-on authentication
and a centralized global scheduler for I-WAY resources. However, while e�ective, the implementa-
tions of these services had signi�cant de�ciencies. In particular, they enforced the use of particular
policies at individual sites, such as the use of an I-POP machine and dedicated allocation of re-
sources to the I-Soft scheduler [9].

The Globus toolkit seeks to overcome these de�ciencies by de�ning more exible interfaces that
can then be implemented in terms of diverse local policies [13]. The Globus Security Services use
public-key mechanisms to map a \globus id" to local ids representing users at di�erent sites. The
Globus Resource Access Manager provides a uniform interface to diverse low-level schedulers and
process management mechanisms [4]. Our MPI implementation has been modi�ed to use these
services to support the creation, monitoring, and management of computations that span multiple
sites.

5 Future Issues

The Nexus/Globus implementation of MPI makes possible a number of extensions to the conven-
tional MPI interface and programming model that may be useful in metacomputing systems. We
discuss these here.

Further Optimizations. The Globus implementation of MPI uses system information to se-
lect from among alternative communication mechanisms but does not otherwise seek to optimize
program execution for a wide area environment. A variety of other optimizations are possible.
For example, MPI topologies can be used to guide the allocation of ranks to processes, network
structure information can be used to optimize the implementation of collective operations [24], and
multicast mechanisms incorporated in Nexus can be used to optimize broadcast operations.

Multimethod Communication. Support for multimethod communication can be extended to
support manual control of method selection in an MPI framework, for example to allow for pro-
grammer selection of specialized methods that use unreliable transport or that compress data. One
promising approach to the speci�cation of this selection is to use MPI's attribute-caching mech-
anism, which allows the programmer to attach to communicators, and subsequently modify and
retrieve, arbitrary key/value pairs called attributes. An MPI implementation can be extended to
recognize certain attribute keys as denoting communication method choices and parameter values.
For example, a key TCP BUFFER SIZE might be used to specify the bu�er size to be used on a
particular communicator, while a key UNRELIABLE could be used to indicate that communication
over a certain communicator can be performed with an unreliable protocol, if this is more e�cient.

User Access to Structure Information. The Globus MDS can be used to provide to the
programmer a wide range of information about the structure and state of the machines and networks
on which they are executing. In the I-WAY experiment, few applications were con�gured to use this
information; however, we believe that this situation simply reects the immature state of practice
in this area and that users will soon learn to write programs that exploit properties of network
topology, etc. Just what information users will �nd useful remains to be seen, but presumably
enquiry functions that reveal the number of machines involved in a computation and the number
of processors in each machine will be required.

9

MPI-2 Dynamic Support. The MPI-2 standard de�nes a number of functions (e.g., MPI SPAWN,
MPI CONNECT) for creating processes dynamically and connecting previously independent compu-
tations. Globus mechanisms can be used to provide portable, secure implementations of these
functions. MPI-2 also de�nes an interface to a lookup service; Globus mechanisms can be used to
implement MPI PUBLISH NAME and MPI LOOKUP NAME.

6 Related Work

Some message-passing libraries permit di�erent communication methods to coexist. For example,
the Intel Paragon implementations of p4 and PVM support heterogeneous computing by using the
NX communication library for internal communication and TCP for external communication [1, 15];
p4 supports NX and TCP within a single process, while PVM uses a proxy process for TCP. In
both systems, the choice of method is hard coded and requires modi�cation to the implementations
to add new communication methods (both p4 and PVM support a variety of methods, including
IBM's MPL and shared memory, as well as TCP).

The deployment of optimized vendor implementations of MPI on parallel computers such as the
IBM SP2 introduces new challenges for wide area implementations. The Nexus implementation of
MPICH can use vendor-supplied MPIs as a low-level transport, but programs that use this library
are then somewhat less e�cient (especially for small messages) than programs that use vendor-
speci�c MPIs within parallel computers. However, the latter approach requires that di�erent vendor
MPIs interoperate; this is not straightforward as di�erent MPIs use di�erent message formats.
Two di�erent approaches have been proposed to this problem. The PVMPI system [6] exploits
MPI's pro�ling interface to support interoperability. This interface allows calls to MPI routines
to be trapped and handled by user-supplied functions. In PVMPI, the \user-supplied" function
determines whether to call regular MPI functions (within a computer) or PVMPI functions (between
computers). PVMPI, however, does not address some of the more subtle requirements of an MPI
implementation with respect to MPI's various send modes and collective communication. An e�ort
called IMPI (for interoperable MPI), hosted by the National Institute of Standards and Technology
and involving only the commercial MPI vendors (hence only homogeneous implementations), seeks
to standardize an IP level interface to MPI, allowing di�erent vendor implementations to connect
to each other.

7 Summary

We have described an implementation of the Message Passing Interface designed to execute in
wide area, heterogeneous environments. We developed this implementation by layering MPICH
on the Nexus communication library and by using startup and information mechanisms provided
by the I-WAY software environment (initially) and the Globus project (work in progress). This
integration produces a system that can deal with heterogeneous communication mechanisms, au-
thentication, resource management, and process management mechanisms. In particular, support
for multimethod communication allows an MPI application to use di�erent communication mecha-
nisms depending on where it was communicating. This implementation has been used by numerous
groups to develop wide area applications for wide area computing systems, initially as part of the
I-WAY project and subsequently elsewhere.

Microbenchmark studies provide insights into the costs associated with the Nexus implementa-
tion of MPI. The results presented here are promising in that they show that overheads associated
with multimethod communication are small and manageable. However, we know that these over-

10

heads can be reduced further. The only unavoidable overheads associated with the Nexus imple-
mentation of MPI seem to be the few microseconds associated with handler lookup and the use of
probe rather than blocking receive.

In future work, we expect to extend our MPI system so that programmers can use existing and
future Nexus mechanisms to vary method selection according to what is being communicated or
when communication is performed. We also expect to develop support for MPI-2 functionality and
to investigate ways in which information provided by the Globus information service can be used
to optimize MPI collective operations.

Acknowledgments

Our work on Nexus and Globus is a joint e�ort with Carl Kesselman and his colleagues at the USC
Information Sciences Institute. This work was supported by the National Science Foundation's Cen-
ter for Research in Parallel Computation, under Contract CCR-8809615, and by the Mathematical,
Information, and Computational Sciences Division subprogram of the O�ce of Computational and
Technology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.

References

[1] R. Butler and E. Lusk. Monitors, message, and clusters: The p4 parallel programming system.
Parallel Computing, 20:547{564, April 1994.

[2] C. Catlett and L. Smarr. Metacomputing. Communications of the ACM, 35(6):44{52, 1992.

[3] C. Cruz-Neira, D.J. Sandin, T.A. DeFanti, R.V. Kenyon, and J.C. Hart. The CAVE: Audio
visual experience automatic virtual environment. Communications of the ACM, 35(6):65{72,
1992.

[4] K. Czajkowski, I. Foster, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A resource
management architecture for metacomputing systems. Technical report, Mathematics and
Computer Science Division, Argonne National Laboratory, Argonne, Ill., 1997. Submitted.

[5] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the I-WAY: Wide
area visual supercomputing. International Journal of Supercomputer Applications, 10(2):123{
130, 1996.

[6] G. Fagg, J. Dongarra, and A. Geist. PVMPI provides interoperability between MPI imple-
mentations. In Proc. 8th SIAM Conf. on Parallel Processing. SIAM, 1997.

[7] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A directory
service for con�guring high-performance distributed computations. In Proc. 6th IEEE Symp.

on High Performance Distributed Computing, pages 365{375. IEEE Computer Society Press,
1997.

[8] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Managing multiple communication meth-
ods in high-performance networked computing systems. Journal of Parallel and Distributed

Computing, 40:35{48, 1997.

[9] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software infrastructure for the
I-WAY metacomputing experiment. Concurrency: Practice & Experience, 1998. to appear.

11

[10] I. Foster, J. Geisler, and S. Tuecke. MPI on the I-WAY: A wide-area, multimethod implementa-
tion of the Message Passing Interface. In Proceedings of the 1996 MPI Developers Conference,
pages 10{17. IEEE Computer Society Press, 1996.

[11] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. International

Journal of Supercomputer Applications, 11(2):115{128, 1997.

[12] I. Foster and C. Kesselman, editors. Computational Grids: The Future of High-Performance

Distributed Computing. Morgan Kaufmann Publishers, 1998.

[13] I. Foster and C. Kesselman. The Globus project: A progress report. In Proceedings of the

Heterogeneous Computing Workshop, 1998. to appear.

[14] I. Foster, C. Kesselman, and S. Tuecke. The Nexus approach to integrating multithreading
and communication. Journal of Parallel and Distributed Computing, 37:70{82, 1996.

[15] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, B. Manchek, and V. Sunderam. PVM: Parallel

Virtual Machine|A User's Guide and Tutorial for Network Parallel Computing. MIT Press,
1994.

[16] A. Grimshaw, J. Weissman, E. West, and E. Lyot, Jr. Metasystems: An approach combining
parallel processing and heterogeneous distributed computing systems. Journal of Parallel and
Distributed Computing, 21(3):257{270, 1994.

[17] W. Gropp and E. Lusk. An abstract device de�nition to support the implementation of a
high-level point-to-point message-passing interface. Preprint MCS-P342-1193, Mathematics
and Computer Science Division, Argonne National Laboratory, Argonne, Ill., 1994.

[18] W. Gropp and E. Lusk. MPICH working note: Creating a new MPICH device using the
channel interface. Technical Report ANL/MCS-TM-213, Mathematics and Computer Science
Division, Argonne National Laboratory, Argonne, Ill., 1995.

[19] W. Gropp and E. Lusk. A high-performance MPI implementation on a shared-memory vector
supercomputer. Parallel Computing, 22(11):1513{1526, January 1997.

[20] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable implementation
of the MPI message passing interface standard. Parallel Computing, 22:789{828, 1996.

[21] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the

Message Passing Interface. The MIT Press, 1994.

[22] T. Howes and M. Smith. The LDAP application program interface. RFC 1823, 08/09 1995.

[23] C. Lee, C. Kesselman, and S. Schwab. Near-realtime satellite image processing: Metacomput-
ing in CC++. Computer Graphics and Applications, 16(4):79{84, 1996.

[24] B. Lowekamp and A. Beguelin. ECO: E�cient collective operations for communication on het-
erogeneous networks. In Proceedings of the 10th International Parallel Processing Symposium.
IEEE Computer Society Press, 1997.

[25] A. Mainwaring. Active Message applications programming interface and communication sub-
system organization. Technical report, Dept. of Computer Science, UC Berkeley, Berkeley,
CA, 1996.

12

[26] Message Passing Interface Forum. MPI: A message-passing interface standard. International
Journal of Supercomputer Applications, 8(3/4):165{414, 1994.

[27] J. Nieplocha and R. Harrison. Shared memory NUMA programming on the I-WAY. In Proc.

5th IEEE Symp. on High Performance Distributed Computing, pages 432{441. IEEE Computer
Society Press, 1996.

[28] M. Norman, P. Beckman, G. Bryan, J. Dubinski, D. Gannon, L. Hernquist, K. Keahey, J. Os-
triker, J. Shalf, J. Welling, and S. Yang. Galaxies collide on the I-WAY: An example of het-
erogeneous wide-area collaborative supercomputing. International Journal of Supercomputer

Applications, 10(2):131{140, 1996.

[29] S. Pakin, M. Lauria, and A. Chien. High performance messaging on workstations: Illinois Fast
Messages (FM) for Myrinet. In Proceedings of Supercomputing '95. IEEE Computer Society
Press, 1996.

[30] Richard Wolski. Dynamically forecasting network performance using the network weather
service. Technical Report TR-CS96-494, U.C. San Diego, October 1996.

13

