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Abstract
Metacomputing entails the combination of diverse, heterogeneous

elements to provide a seamless, integrated computing service. We de-
scribe one such metacomputing application using Compositional C++
that integrates specialized resources, high-speed networks, parallel
computers, and VR display technology to process satellite imagery
in near-real-time. From the virtual environment, the user can query
an InputHandler object for the latest available satellite data, select a
satellite pass for processing by CloudDetector objects on a parallel su-
percomputer, and have the results rendered by a VisualizationManager
object which could be a simple workstation, an ImmersaDesk or a
CAVE. With an ImmersaDesk or CAVE, the user can navigate over
a terrain with elevation and through the cloudscape data as it is be-
ing pumped in from the supercomputer. We discuss further issues for
the development of metacomputing capabilities with regards to the
integration of run-time systems, operating systems, high-speed com-
munication, and display technologies.

Keywords: Metacomputing, parallel and distributed languages, high-
speed networks, virtual environments.

1 Introduction

Satellite constellations typically require large, distributed ground sys-
tems for processing and dispersing data products. The performance re-
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quirements of these ground systems depend on the number of satellites
in the constellation, the bandwidth of the bits “hitting the ground”
and the complexity of the application domain processing. In addi-
tion, after the bits hit the ground, there can be a hard deadline after
which data products must be available. When coupled with end-user
demands for data with higher temporal and spatial resolution, ground
system performance requirements are increasing dramatically.

To achieve this level of performance efficiently, compute resources
must be integrated to a level far beyond what is typically seen to-
day. Unique data sources, processing power, display technologies and
networks must be integrated into a seamless resource that can be eas-
ily managed within one framework. These are the requirements of
metacomputing, a uniform method for handling a collection of hetero-
geneous resources.

In this paper, we present a case study in metacomputing: a cloud
detection and visualization application for infrared and visible light
satellite images that integrates high-speed networks, parallel and dis-
tributed computing, and stereoscopic visualization using Composi-
tional C++ (CC++) [1], a simple yet powerful extension of C++,
and its run-time system, Nexus [5]. We begin by discussing the prob-
lem of metacomputing in a little more depth.

2 Elements of Metacomputing

Metacomputing adds another dimension to the system building prob-
lem. In addition to making sure that an application is implemented
correctly, one must be able to do configuration management over a
potentially arbitrary collection of resources. This means that the ap-
plication must be able to (1) identify available resources, (2) acquire
any such resources, (3) initialize the computation on them, and even-
tually (4) terminate. Initialization can be further categorized into
independent and dependent initialization in a static or dynamic topol-
ogy. For example, after a compute node is acquired, the application
must do initialization that is local to that compute node and indepen-
dent of other nodes, e.g., find local data files and build internal data
structures. In order to integrate that compute node into the computa-
tion, the application must do initialization that is dependent on other
nodes, e.g., exchange various operating parameters and references to
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remote objects. This often requires an order to independent and de-
pendent initialization phases as compute resources and application
objects are integrated into the computation. For many applications, a
static topology of resources is sufficient. As this technology matures,
however, application topologies will be increasingly dynamic and may
change as the computation proceeds.

Once installed on some configuration of resources, an application
must be able to do resource management effectively. This means com-
posing not only different machines, but (1) composing different types
of parallelism, (2) managing both synchronous and asynchronous con-
trol flow among compute nodes, (3) allowing for both control-oriented
and data-oriented synchronization, and (4) managing data locality
in order to minimize communication and latency. Communication
among compute nodes is an important resource that can take many
forms in a heterogeneous environment. This could be shared mem-
ory, hardware message-passing, or network message-passing such as
ethernet, ATM, HIPPI, etc. All of these media must be controllable
by the application to manage the available bandwidth and tolerate
variable latencies. When combined with unique resources, such as
satellite downlink stations and stereoscopic visualization systems, the
metacomputer can be a geographically disperse, networked, parallel
and distributed, heterogeneous system. Controlling such a system is
greatly facilitated by a uniform method whereby one can easily express
the desired computational behavior.

3 CC++ and Nexus

Compositional C++ (CC++) is a small, uniform extension to C++
for handling parallel and distributed computation. Since the language
is essentially architecture-independent, it can be used to handle hetero-
geneous resources. While CC++ gives the implementor a great deal
of flexibility, its run-time system, called Nexus, manages the actual
transfer of data and control among the compute nodes on whatever
bitways are available almost transparently at the language level. This
is an effective combination for managing a large heterogeneous system.
We briefly describe CC++ prior to describing Nexus.

The CC++ extension consists of only six new keywords and their
attendant semantics: global, par, parfor, spawn, atomic and sync.
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The keyword global is essentially used to denote and control locality –
the minimal necessary concept that must appear at the language level
to support metacomputing. Applying global to a class denotes a pro-
cessor object; an object that has its own address space, is associated
with some (at least logical) location and, for practical purposes, an ex-
ecutable binary. Applying global to a pointer denotes a pointer that
can be used to reference any data type regardless of location. Hence,
a global pointer can be used to access data and function members of
a remote object. For example,

local var = gp->remote data member;

assigns the value of a remote data member referenced by the global
pointer gp to a local variable. The statement

ret val = gp->remote member func(args);

locally evaluates args, transfers them to the remote location where
the remote member function is evaluated, and eventually assigns the
return value to the local variable.

The other five keywords are used to control parallelism and syn-
chronization. Structured and unstructured control parallelism is spec-
ified using par, parfor, and spawn. A par block denotes parallel
execution of a fixed number of statements known at compile-time.
A parfor statement denotes parallel execution over an index space
whose range does not need to be known until run-time. Both of these
statements offer structured parallelism since each statement termi-
nates when all of the constituent statements or loops have termi-
nated. The spawn statement allows unstructured parallelism since
any spawned statement executes in parallel without necessarily any
subsequent synchronization.

Both control- and data-oriented synchronization are supported.
Applying atomic to a member function denotes that it can be executed
by only one thread of control at a time. Threads attempting to enter
an “occupied” atomic function block until the occupying thread leaves.
Applying sync to a data member denotes single-assignment semantics;
threads referencing this data member block if the member has not yet
been assigned a value.

All of these language level semantics are supported at the run-time
level by Nexus. Nexus associates a processor object name at the lan-
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guage level with an executable binary. Processor objects are created
using the standard new syntax along with the optional placement syn-
tax. In C++, the optional placement syntax can be used to specify
memory alignment. In CC++, it can also be used to specify location,
i.e., a host name or number where Nexus should execute the binary
file that corresponds to the new processor object. Nexus currently
uses a relatively static resource database to determine where the de-
sired host actually is and how to bootstrap a new processor object,
or in Nexus terminology, a context on it. If the target host is in the
same trusted domain and on the same filesystem, Nexus can use a
simple rsh command to start the executable binary. If this is not the
case, an .rhosts file can be used in conjunction with the rsh. To
achieve better security, a nexus server can be used that listens on a
specified network port number and uses PGP authentication to verify
requests to create new contexts (start executables) on that host. Once
the child context is established, the parent and child will communi-
cate using the method specified in the database, e.g., shared-memory,
or local message-passing hardware or bitways such as ethernet, ATM,
etc.

Global pointer operations between objects are translated into re-
mote service requests (RSRs) between contexts. At creation time, an
object registers a set of entry functions with its local Nexus that are
used to service remote requests for retrieving the value of data mem-
bers or executing function members locally. When an object initiates
a global pointer operation, the arguments are evaluated locally and
then marshaled by the Nexus sending the RSR. The receiving Nexus
looks-up and executes the appropriate entry function. If there is a re-
turn value from the member function, the CC++ compiler generates
code for a return RSR to the originating Nexus and object.

If the size and structure of an argument type for a remote member
function is known at compile-time, then the compiler can generate
the appropriate marshaling code for the RSR. If the argument’s size
is dynamic and not known until run-time, or if the argument type
involves pointers, then the CC++ program must supply a void shift
operator to tell Nexus how to move data from one context to another.
(CC++ uses the concept of shifting data into the void from one context
and out of the void into another context.) When supplied with the
properly typed shift operators, the CC++ compiler can direct Nexus
to transparently manage the transfer of arbitrary data types between
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contexts.
For the parallel and synchronization language features, Nexus pro-

vides a threaded environment. Parallel threads of execution are cre-
ated for par, parfor, and spawn statements. Condition and mu-
tex variables are used to implement the synchronization semantics of
atomic and sync. The semantics implemented by Nexus threads are
fully integrated with the global pointer and RSR machinery such that
any number of threads can interact with fair scheduling among any
number of contexts.

4 An Application Case Study

Having described the functionality that CC++ offers for heteroge-
neous parallel and distributed computing, this section describes the
use of that functionality in building a large-scale application. We be-
gin by briefly illustrating what the application’s problem architecture
looks like and our implementation architecture.

4.1 The Application

NEPH is a near-real-time cloud detection code for satellite imagery.
(Nephology is the study of clouds.) The main input to the code is two-
dimensional infrared and visible light images from on-board satellite
sensors. The image pixels are first geo-located (assigned a latitude
and longitude value). Infrared data is corrected for previously known
temperature climatology depending on geography type (land, water,
desert, etc.), time of day and time of year. Visible data is corrected for
previously known background brightness according to geography type,
time of day and time of year. The corrected data and other historical
data is used to determine dual thresholds in both channels (visible and
infrared) to decide if a pixel is clear, partially cloudy or completely
cloudy. This leads to a 3×3 decision matrix for pixel cloudiness. False
colors can be used to indicate which matrix element a pixel falls in
except the “clear” pixel which is colored according to geography type.
(See Figure 1.) In an operational system that is processing data on a
regular basis, the results of each computation are stored and used, in
part, to determine the thresholds used on future data sets.

Previous implementations of this system use a sub-analysis box,
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Figure 1: Output Cloud Mask. Red indicates cloudy pixels detected only in
the infrared image. Green indicates cloudy pixels detected only in the visible
light image. White and gray indicate agreement. Others colors are used for
others elements of the decision matrix.
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Figure 2: NEPH architecture.

where whole images are decomposed into smaller subregions on which
the analysis algorithms are run. Hence, this allows for a straightfor-
ward data decomposition approach for extracting parallelism which is
“embarrassingly parallel” or “parallel machine friendly”. Typically a
sub-analysis box is 32×32 pixels. Since even a low resolution image is
typically 1440×1440 pixels, a simple outer loop parallelization can ex-
tract a reasonable amount of parallelism where stripes of an image are
given to different processors and the output is recomposed for display.

This application has a natural pipeline structure. Since satellite
data obviously has to come from a satellite, the input machine must
have a downlink capable of receiving, decrypting and storing the raw
satellite telemetry. Once this data hits the ground, it can be streamed
from the input machine to any set of machines capable of running
the analysis algorithms. The output of these cloud detector compu-
tations can then be reassembled for display on an appropriate display
machine.

The entire application structure is illustrated in Figure 2. The
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UserMain processor object is started by the user and is responsible
for acquiring all other resources, managing independent and depen-
dent initialization and clean termination. The InputHandler proces-
sor object acquires current satellite data (or opens a file of previously
acquired data) that are partitioned for subsequent processing. Each
CloudDetector processor object manages one or more CloudWorkers
which share common conversion tables, etc., within a CloudDetector.
The InputHandler streams image partitions to the CloudWorkers by
invoking a CloudWorker member function through a global pointer.
While parallelism is realized across multiple CloudDetectors, paral-
lelism is also realized by multiple CloudWorkers within a CloudDetector
when the detector is hosted on a shared-memory multiprocessor.

A variety of display technologies are possible for this application.
The simplest display is a two-dimensional pixel map using grey scale
or false color (as already shown in Figure 1) that is updated whenever
processed data becomes available. Another possibility, however, is a
three-dimensional rendering. Since the higher a cloud is, the colder it
is, the infrared data can be used to derive the altitude of the cloud
tops. Hence, each pixel can be located at some altitude over a specific
latitude and longitude allowing for a three-dimensional rendering of
the cloud tops.

To accommodate this functionality, a simple class hierarchy was
developed. NEPH uses a VisualizationManager abstract class which
controls any number of abstract DataSetHandlers. Each DataSetHandler
reassembles data partitions from the CloudWorkers. For two-dimensional
displays, a DisplayManager and WindowHandler are derived from
VisualizationManager and DataSetHandler, respectively. For stereo-
scopic displays, such as a CAVE or ImmersaDesk, a CaveManager and
CaveDataSetHandler are derived. Needless to say, the virtual mem-
ber functions called by the CloudWorkers via global pointer are imple-
mented differently in the two derived classes. VisualizationManager
semantics require that any derived class implement a basic event loop
such that the user can interact with the application and the display
technology as appropriate.

4.2 The I-WAY Host

During development, NEPH was hosted on a variety of workstation
clusters and symmetric multiprocessors. At Supercomputing ‘95, NEPH
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was hosted and demonstrated on the I-WAY [2]. (See Figure 3.) The
InputHandler was hosted on a specialized Sparc-10 at The Aerospace
Corporation near Los Angeles. This machine is configured with a
satellite dish and special-purpose hardware to receive, decrypt and
store raw telemetry. (This is why NEPH is termed “near-real-time”;
the data first lands on a disk prior to being partitioned for process-
ing.) CloudDetectors and CloudWorkers were hosted on twenty nodes
of the IBM SP-2 at Argonne National Laboratory outside Chicago.
UserMain and the CaveManager were hosted on an SGI Onyx running
an ImmersaDesk at SC95 in San Diego. Nexus servers were used to
acquire these resources and ATM virtual circuits were used to com-
municate among them.

Figure 4 shows one of the data sets processed over the I-WAY. This
is a stereoscopic view looking over the top of a hurricane north towards
Baja California and Mexico from the same data set shown in Figure 1.
Using the multithreading capabilities supported by CC++ and Nexus,
the CaveManager’s basic event loop was written to allow simultaneous
interaction between CAVE events, such as wand movement and button
clicks, and input from the CloudWorkers. Hence, a simple CAVE
graphical interface was developed such that the user in San Diego
could query the InputHandler near Los Angeles for the latest available
satellite data passes, select a pass for processing by the CloudWorkers
outside Chicago, and then navigate through a stereoscopic cloudscape
as partitions of processed cloud data arrived back in San Diego. The
graphical interface also allowed the user to change thresholds, color
maps, and terminate the application.

The bandwidth demands placed on the I-WAY were actually quite
modest since the Sparc-10 could only support the input demands for
a limited number of CloudWorkers. The InputHandler can, however,
stage the data for later processing from a faster machine. Communica-
tion bandwidth demand can also vary since the data volume involved
in a satellite pass can vary. A satellite that passes directly over the
input machine has the longest contact time and, hence, can down-
load the most data. For this demonstration, only low-resolution data
was used. This means that a typical NEPH dataset that includes in-
frared, visible light, latitude and longitude data is approximately 15
MB which is partitioned into stripes of 46 KB that are delivered to
the CloudWorkers on demand. High-resolution data will increase the
data volume by 25× which could use a communication bandwidth of
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Figure 4: Stereoscopic view over top of hurricane towards Baja California
and Mexico. Vertical scale is exaggerated.
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∼ 184 Mbits/second depending on the exact number of CloudWorkers
used.

5 Discussion

The metacomputing style offered by CC++ and the functionality sup-
ported by Nexus worked exceedingly well for this application. The ob-
ject oriented semantics of CC++ allowed the application to be built
according to its natural structure. The flexibility encapsulated by
Nexus allowed us to easily host the application on a variety of compute
resources. There are, however, many application and research groups
are implementing large, heterogeneous systems and working on issues
related to those being addressed by CC++ and Nexus. A fundamen-
tal issue is what advantage does metacomputing using global pointers
at the language level have over some library level paradigm such as
Remote Procedure Call (RPC), a client/server approach, or message-
passing with PVM [6] or MPI [4]? How is calling a remote member
function with call-by-value arguments significantly different from mar-
shaling arguments for an outgoing message and perhaps blocking for
a return message?

The first answer is that of uniformity and transparency. The same
functional interface is used for remote control and communication that
is used for a local function call in sequential code. In addition, argu-
ments are typed in a way that is meaningful to the application. There
is no artificial run-time enumeration of message “types” that must cor-
respond to the type of data being sent or the remote processing that
must be done with it. Since remote member function arguments are
truly typed, the compiler can enforce consistency. The second answer
is that global pointers are a first-class data type. Global pointers can
be freely passed among processor objects and used to access data and
functions regardless of location while still being subject to the rules of
C++ member access. This is a much more structured and powerful
way of managing control and data.

Another fundamental comparison can be made between global
pointers and global variables. Global variables typically imply a shared
name-space or data-space ([9], for example) which can be easier to
use and very efficient when supported in shared-memory hardware.
Supporting this paradigm in a distributed environment, however, re-
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quires the same kind of caching, consistency and access control but in
software rather than hardware. Global pointers force the application
designer to be explicit about data locality. Virtual shared memory,
on the other hand, does not and can incur a high and nondetermin-
istic overhead if an inappropriately sized data region is cached or if
the data region does not correspond to logical data objects. Virtual
shared memory can also encourage programming techniques that re-
quire a finer granularity than what can be supported efficiently.

A related but different approach is taken by Legion [11]. Legion
provides a global name-space but only for objects. Legion handles this
internally by building Legion Object Identifiers which must be bound
to physical Object Addresses that the underlying run-time system can
use to actually interact with a target object. Hence, direct references
to members of a global object are implemented as references through
its physical Object Address. This is much the same internal func-
tionality as a global pointer; the difference being that a CC++ global
pointer contains all the information that Nexus needs to access a re-
mote object whereas a Legion Object Identifier initially needs to be
bound to a physical Object Address by a Binding Agent that may
need to consult a LegionClass object to determine the binding.

Besides these issues of the fundamental approach to metacomput-
ing, much work is being done in the area of integrating object-oriented
parallelism, threaded environments, high-speed communication and
virtual reality (VR) technologies. A number of parallel languages
based on C++ exist [12]. While CC++ is does not directly support
data-parallelism, data-parallel class libraries can be built that have
much the same semantics as concurrent aggregates [10]. Threads and
communication have also been extensively studied [8, 7]. In contrast
to some of these systems, threads are not explicitly used at the appli-
cation level in CC++ and since the CC++ compiler translates source
code into vanilla C++, it can be hosted on any machine with a C++
compiler allowing greater portability. Steps in the integration of com-
munication and VR have been taken by systems such as CAVEcomm
[3]. CAVEcomm is based on a single-threaded subset of Nexus and is
used to connect supercomputers with a message-passing interface that
is tailored for virtual environments. The work reported in this paper
encompasses all of these areas by integrating metacomputing and VR
in a multithreaded environment at the language level.
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6 Future Work

Future work in these situations is always divided between applica-
tion issues and infrastructure issues. Application issues include the
processing of high resolution data (a 25× increase in data volume),
cloud layering and typing (to derive more information about the cloud
structure), and volumetric cloud rendering.

The infrastructure or metacomputing issues are quite fundamen-
tal. The flat, static resource database currently used by Nexus is only
adequate for flat, static application configurations. Capabilities must
be introduced into Nexus for resource identification and resource dis-
covery. This must be a general, possibly hierarchical and distributed
method whereby an application can query remote sites for available
resources of a given type and configuration and then negotiate for ac-
quisition of those resources. Besides meaning simply some number of
processors, “resources” can mean memory space, disk space, access to
globally named storage objects (file systems) and bandwidth between
sites. Resources could also mean properties such as security, fault
tolerance, and quality of service on a given bitway.

The integration of these capabilities at the language level in fact
requires a closer integration of the run-time system, the operating sys-
tem, and communication in addition to display technologies. Threads
of control that relate directly to application operations should be tied
more closely to communication protocols and OS scheduling policies
in order to maximize performance. Remote communications can be
streamlined by using one-copy and zero-copy user-space device drivers.
Reduced communication latencies, direct support of control opera-
tions, and generally making network performance as close as possible
to that of a backplane will be necessary to support this style of meta-
computing at the language level. When this is accomplished, we will
be able to interact with a metacomputer through a virtual environ-
ment in ways that have yet to be imagined.
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