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Abstract

The Globus Data Grid architecture provides a scalable
infrastructure for the management of storage resources and
data that are distributed across Grid environments. These
services are designed to support a variety of scientific
applications, ranging from high-energy physics to compu-
tational genomics, that require access to large amounts of
data (terabytes or even petabytes) with varied quality of
service requirements. By layering on a set of core services,
such as data transport, security, and replica cataloging,
one can construct various higher-level services. In this
paper, we discuss the design and implementation of a
high-level replica selection service that uses information
regarding replica location and user preferences to guide
selection from among storage replica alternatives. We
first present a basic replica selection service design, then
show how dynamic information collected using Globus
information service capabilities concerning storage system
properties can help improve and optimize the selection
process. We demonstrate the use of Condor’s ClassAds
resource description and matchmaking mechanism as
an efficient tool for representing and matching storage
resource capabilities and policies against application
requirements.

Keywords: Data Grid, Grid Computing, Replica Se-
lection, Globus

1 Introduction

An increasing number of scientific applications ranging
from high-energy physics to computational genomics re-

quire access to large amounts of data—currently terabytes
and soon petabytes—with varied quality of service require-
ments. This diverse demand has contributed to the prolif-
eration of storage system capabilities, thus making storage
devices an integral part of the Grid environment and thereby
constituting the Data Grid. The Globus [6] Data Grid archi-
tecture is an effort to standardize access to the multitude of
storage systems spread across the Grid environment. It at-
tempts to abstract these diverse elements of the data grid by
providing a set of core services that can be used to construct
a variety of higher-level services [2].

In this paper, we first describe the basic Globus Data
Grid architecture, explaining briefly the various compo-
nents. We then describe the process of identifying char-
acteristics of interest about a storage replica resource, and
we illustrate the mechanism with which these characteris-
tics can be published. Next, we explain the architecture of
replica selection, a higher-level service, built by using core
services provided by the Globus data grid. We conclude
by presenting the use of Condor’s classified advertisements
(ClassAds) and matchmaking mechanisms [9] as an elegant
matching and ranking tool in a storage context.

2 Architecture of Data Grid

The Globus data grid is organized into two layers,
namely, core services and higher-level services that are built
using the core services. The working hypothesis is that this
hierarchical organization will make it possible to reuse ser-
vices and code across a variety of applications and tools,
so that, for example, both application-specific replica man-
agement solutions and sophisticated storage management
systems such as the Storage Request Broker (SRB) [3] can
share common low-level mechanisms.
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Figure 1. Data Grid Architecture [2].

2.1 Core Services

Core Data Grid services (Figure 1) seek to abstract the
multitude of storage systems that exist in Grid environ-
ments, so that higher-level services—and applications—can
access those storage systems uniformly. These core services
include the following:

� Storage Systems and Data Access - Storage system
and data access services provide basic mechanisms
for accessing and managing the data located in stor-
age systems. These mechanisms provide abstractions
for uniformly creating, deleting, accessing and modi-
fying file instances across storage systems, regardless
of their physical location. They target secondary and
archival storage systems such as Unix file systems,
High Performance Storage System (HPSS) [4], and
Unitree and can also be used to access more sophis-
ticated systems such as SRB.

� Metadata Access - The metadata access service pro-
vides mechanisms to access and manage information
about the data stored in storage systems. Various kinds
of metadata are provided by this service:

1. Application Metadata describes the contents of
the file, the circumstances under which the data
was collected, and various details used by the ap-
plication.

2. Replica Metadata describes the mapping be-
tween file instances and particular replica loca-
tions.

3. System Configuration Metadata describes the
capabilities of storage systems, thus providing in-
formation on the fabric of the Data Grid.

The metadata service further provides a uniform
method with which the various metadata can be pub-
lished and accessed [2].

These services themselves build on basic security and infor-
mation services provided by the Globus Toolkit [6].

2.2 Higher-Level Services

The core Data Grid services can be used to construct a
variety of higher-level services (Figure 1). For example:

� Replica Management - Replica management is the
process of creating or deleting replicas at a storage
site. Most often, these replicas are exact copies of the
original files, created only to harness certain perfor-
mance benefits. A replica manager typically maintains
a replica catalog containing replica site addresses and
the file instances.

� Replica Selection - Replica selection is the process of
choosing a replica from among those spread across the
Grid, based on some characteristics specified by the
application. One common selection criteria would be
access speed [2].

3 Storage System Functionality and Replica-
tion

Intelligent replica selection requires information about
the capabilities and performance characteristics of a storage



system [2]. We address this information discovery problem
by leveraging machinery provided by the Globus Metacom-
puting Directory Service (MDS) [5], an information collec-
tion, publication, and access service for Grid resources.

The Globus MDS uses the Lightweight Directory Ac-
cess Protocol (LDAP) [7] as its access protocol and LDAP
object classes as its data representation, but it adopts inno-
vative approaches to the problems of resource registration
and discovery. Information about an individual resource
or set of resources is collected and maintained by a Grid
Resource Information Service (GRIS) daemon, which re-
sponds to LDAP requests with dynamically generated infor-
mation and can be configured to register with one or more
Grid Index Information Services (GIISs). Users will typi-
cally direct broad queries to GIIS to discover resources and
then drill down with direct queries to GRIS to get up-to-
date, detailed information about individual resources.

Information in LDAP is organized in a tree structure re-
ferred to as a Directory Information Tree (DIT), with nodes
in a DIT tree corresponding to the LDAP structured data
types called object classes. Figure 3 depicts the DIT hi-
erarchy of object classes that we have defined to describe
storage systems in a Data Grid environment. We describe
these object classes in the following section.

3.1 Storage GRIS

Each storage resource in the Globus Data Grid incor-
porates a Grid Resource Information Server, configured to
collect and publish system configuration metadata describ-
ing that storage system. This information typically includes
attributes such as storage capacity and seek times, and de-
scriptions of site-specific policies governing storage system
usage. Figure 2 shows the object class definition that we
have developed for this data. Attributes are labeled as ei-
ther “MUST CONTAIN” or “MAY CONTAIN,” indicating
whether or not they are mandatory.

This object class contains both dynamic and static
attributes: attributes such as totalSpace, availa-
bleSpace, and mountPoint are dynamic, varying with
various frequencies; attributes such as diskTransfer-
Rate, drdTime, dwrTime, and requirements are
more static.

The requirements attribute is particularly interesting: it
allows an administrator to specify the conditions under
which the specified storage replica can be used, based, for
example, on device utilization. For example, the require-
ments attribute could be a Boolean expression of maximum
allowable storage and transfer bandwidth and can be spec-
ified using the ClassAd [9] mechanism. We discuss Clas-
sAds in detail in a later section.

The data shown in Figure 2 is gathered in a variety of
ways. We base our general approach on a generic LDAP-

Grid::Storage::ServerVolume
OBJECT CLASS ::={
SUBCLASS OF Grid::Physical Resource
RDN = gss(Grid::Storage::ServerVolume)
CHILD OF {

Grid::organizationalUnit
Grid::organization
Grid::Top

}
MUST CONTAIN {

totalSpace::cisfloat::singular,
availableSpace::cis::singular,
mountPoint::cisfloat::singular,
diskTransferRate::cisfloat::singular,
drdTime::cisfloat::singular,
dwrTime::cisfloat::singular,
}

MAY CONTAIN {
requirements::cis::singular,
filesystem::cis::multiple,

}
}

Figure 2. System Configuration Metadata
specification using LDAP object classes.

based GRIS server developed within the Globus project.
The OpenLDAP server has a feature by which shell scripts
(“shell-backends”) can be executed at the back-end in re-
sponse to search queries; we use such scripts to gather
dynamic attributes such as availableSpace, mount-
Point, and totalSpace. Static attributes such as site
usage policies and seek times can be specified by the admin-
istrator in a configuration file. Data collected in this manner
is published in a suitable format (for example, LDIF [7]).

3.2 Data Access Service

We are also interested in the speed of a storage system,
or, rather, in the time that the storage system can be ex-
pected to take to deliver a replica. One approach to de-
termining this information is to construct a performance
model of the relevant components (e.g., see [10]). We fa-
vor an alternative approach in which historical information
concerning data transfer rates is used as a predictor of fu-
ture transfer times. In brief, storage systems are configured
to provide information on their own behavior and perfor-
mance. Attributes such as maximum achievable read and
write transfer bandwidths across networks can help an ap-
plication choose one replica over another. Such data can
be obtained by the storage replica by monitoring their own
performance. This feature can be extended further, to ob-



Objectclass:  GlobusStorageServerVolume

dn: volume=/dev/sandbox, dc=sh, dc=anl, dc=gov

Static Data (Administrator Specified)
Requirement Constraints(Administrator Specified)
Dynamic Data (available space - df, etc)

Objectclass:  GlobusStorageTransferBandwidth
dn: volume=/dev/sandbox, dc=sh, dc=anl, dc=gov

FTP Performance Data
(Average RD/WR bandwidths per logical volume)

Objectclass:  GlobusSourceTransferBandwidth

volume=/dev/sandbox, dc=sh, dc=anl, dc=gov
dn: source=http://www.usc.edu,

FTP Performance Data
(Average RD/WR bandwidths per source)

Objectclass:  GlobusSourceTransferBandwidth

volume=/dev/sandbox, dc=sh, dc=anl, dc=gov
dn: source=http://www.nasa.gov,

(Average RD/WR bandwidths per source)
FTP Performance Data

Figure 3. The directory information tree structure used in our storage system GRIS

tain statistical information based on the performance data,
such as average transfer bandwidths and their standard de-
viations, that can help predict the behavior of a particular
replica. Further, we expect that there will be significant
reuse of storage servers by clients, thereby justifying per-
formance information on a per source basis, which provides
a client useful information on end-to-end transfer perfor-
mance between the server and the client. For example, a
simple heuristic of combining past observed performance
with current load of server might give a client a reasonably
good choice of server.

Figures 4 and 5, along with Figure 3, depict the object
classes used to record performance data associated with a
replica location. The object class in Figure 4 specifies a
summary of transfer bandwidth performance for all replica
transfers, and the object class in Figure 5 specifies the
performance details from the replica location to particular
source sites. We gather this performance data by using in-
strumentation incorporated in the GridFTP server [6][1].

4 Classified Advertisements

Classified Advertisements (ClassAds) [9] are an elegant
matching mechanism used in the Condor high-throughput
computing system to map resource capabilities against job
requirements. ClassAds allow resources and jobs to ad-
vertise their capabilities and requirements as attribute-value
pairs that can be matched. Two ClassAds match if the log-
ical expressions contained in the “requirements” attribute
in both of them is satisfied. This requirements attribute it-

self can be represented in terms of other attributes. Further,
ClassAds provide a mechanism for ranking the matches
based on some attribute value, or value computed from mul-
tiple attributes. Up until now, ClassAds have been used ex-
tensively in Condor for job placements. In this section, we
present the use of ClassAds in a storage context.

The various storage attributes described in the preced-
ing section can be represented as attribute-value pairs in a
ClassAd. For example, the following is a simple ClassAd
describing the capabilities of a storage resource:

hostname = “hugo.mcs.anl.gov”;
volume = “/dev/sandbox”;
availableSpace = 50G;
MaxRDBandwidth = 75K/Sec;
requirement = other.reqdSpace < 10G
&& other.reqdRDBandwidth < 75K/Sec;

This ClassAd describes a volume of a storage resource by
specifying its attributes. The ClassAd also specifies a usage
policy enforced by the resource, whereby only applications
requiring storage less than 10 GB and transfer bandwidths
less than 75 KB/sec are granted access. When two ClassAds
are being matched, a MatchClassAd is created that contains
both ClassAds. Each ClassAd can refer to the other Clas-
sAd by using the “other” keyword.

A ClassAds representation of storage capabilities pro-
vides an efficient environment for matching, querying, and
ranking requests. We will discuss the specifics of a request
ClassAd and the matching process once we describe the
replica selection mechanism.



Grid::Storage::TransferBandwidth
OBJECT CLASS ::={
SUBCLASS OF Grid::StorageServerVolume
RDN = gss(Grid::TransferBandwidth)
CHILD OF {

Grid::StorageServerVolume
Grid::organizationalUnit
Grid::organization
Grid::Top

}
MUST CONTAIN {

MaxRDBandwidth::cisfloat::singular,
MinRDBandwidth::cisfloat::singular,
AvgRDBandwidth::cisfloat::singular,
MaxWRBandwidth::cisfloat::singular,
MinWRBandwidth::cisfloat::singular,
AvgWRBandwidth::cisfloat::singular,
..........................................................

}
}

Figure 4. Performance data specification de-
scribing entire site characteristics, using
LDAP object classes.

5 Replica Selection

As noted above, a Data Grid provides a convenient en-
vironment for a community of researchers, interested in
particular data sets, to maintain replicas of the data sets
at their respective sites. Such an environment would pro-
vide both faster access and better performance characteris-
tics. Replica selection is a high-level service provided by
the Data Grid based on the core services. The replica selec-
tion process allows an application to choose a replica, from
among those in a replica catalog, based on its performance
and data access features.

An application that requires access to replicated data be-
gins by querying an application specific metadata reposi-
tory, specifying the characteristics of the desired data. The
metadata repository maintains associations between repre-
sentative characteristics and logical files, thus enabling the
application to identify logical files based on application re-
quirements. Once the logical file has been identified, the
application uses the replica catalog to locate all replica lo-
cations containing physical file instances of this logical file,
from which it can choose a suitable instance for retrieval.

The entity that identifies the suitable instance of a repli-
cated file based on application requirements is referred to as
a broker. In effect, the responsibility of the broker is to map
application requirements against storage resource capabili-
ties. In the following section, we discuss the storage broker

Grid::Storage::SourceTransferBandwidth
OBJECT CLASS ::={
SUBCLASS OF Grid::TransferBandwidth
RDN = gss(Grid::SourceTransferBandwidth)
CHILD OF {

Grid::StorageTransferBandwidth
Grid::StorageServerVolume
Grid::organizationalUnit
Grid::organization
Grid::Top

}
MUST CONTAIN {

lastWRBandwidth::cisfloat::singular,
lastWRurl::cis::singular,
lastRDBandwith::cisfloat::singular,
lastRDurl::cis::singular,

}
}

Figure 5. Performance data specification de-
scribing per source characteristics using
LDAP object classes.

in detail.

5.1 The Storage Broker

In this section, we first delve into the details of the stor-
age broker architecture. We then discuss the overall archi-
tecture, a decentralized selection process, and a few issues
involved in its realization.

5.1.1 Decentralized Selection Process

Traditionally, resource brokers have adopted a centralized
approach to resource management, wherein a single node
is responsible for decision making. An example of such
an environment is the Condor [8] high-throughput comput-
ing platform, wherein a central manager is responsible for
matching resources against jobs. Obvious disadvantages to
this approach are scalability and a single point of failure.
Of course, Condor has an efficient recovery mechanism to
address failure and has been proven to scale to thousands of
resources and users.

But there is a more fundamental problem with this cen-
tralized approach when applied to Grids. In these highly
distributed environments, there are numerous user commu-
nities and shared resources, each with distinct security re-
quirements. No single resource broker is likely to be trusted
by all of these communities and resources with the neces-
sary information to make decisions. At the extreme, each
user may need his or her own resource broker, because only



that user has the authorization to gather all of the informa-
tion necessary to make brokering decisions.

For this reason, we have designed a decentralized storage
brokering strategy wherein every client that requires access
to a replica performs the selection process rather than a cen-
tral manager performing matches against clients and repli-
cas.

5.1.2 Architecture

Figure 6 presents a snapshot of the Grid environment where
storage resources are scattered and each client requiring ac-
cess to a replica initiates a decentralized replica selection
mechanism. As can be seen, there is no central point of
control, and decision making is delegated to each and every
client.

An application requiring access to a file presents its re-
quirements as a ClassAd to the broker. These requirements
might be as simple as a Boolean expression indicating the
storage and transfer bandwidth required or may indicate
more complex constraints on storage system type, state, and
policy. The broker then performs the following sequence of
actions:

� Search Phase

1. The broker attempts to find a suitable replica
matching the application’s requirements. To
achieve this, it queries the replica catalog, which
contains addresses of all replicas for each logical
file.

2. The next step is to query each replica location.
As we have seen before, this involves using
LDAP searches to query GRIS servers associated
with storage systems.

3. In response to the LDAP search, each storage
system returns its capabilities and usage policies
in the LDAP Information Format.

4. The broker collects the capabilities of all replica
resources and proceeds to the matching phase.

� Match Phase

1. The replica capability data is converted into Clas-
sAd format in preparation for invoking the Con-
dor matchmaking mechanisms. We thus obtain a
list of classified advertisements, representing the
various replica sites.

2. The broker then performs a match of the appli-
cation’s requirement ClassAd against the list of
replica capability ClassAds, obtaining a set of
replica locations that satisfy the criterion.

3. The ClassAd ranking feature can be used to prior-
itize successful matches based on some attribute,
specified by the application.

� Access Phase

1. Once a suitable replica has been identified, the
file is accessed using a high-speed file transfer
protocol, for example the GridFTP tools pro-
vided within the Globus Toolkit.

5.2 An Example Application Request

In Section 4, we described a storage ClassAd that indi-
cates its willingness to accept application requests that re-
quire space less than 10 GB and require a transfer band-
width less than 75 KB/sec. In this section, we look at a user
request ClassAd and how it is matched against the storage
ClassAd.

An application might advertise its request to the broker
as follows:

hostname = “comet.xyz.com”;
reqdSpace = 5G;
reqdRDBandwidth = 50K/Sec;
rank = other.availableSpace;
requirement = other.availableSpace >
5G && other.MaxRDBandwidth >
50K/Sec;

The application indicates its preference for a storage re-
source that has more than 5 GB available space and a max-
imum transfer bandwidth greater that 50 KB/sec. The bro-
ker, upon receiving such a request, attempts to contact all
replica locations identified by the replica catalog, using
LDAP search queries to request the attributes of interest:
in this case, availableSpace and MaxRDBandwidth.
The broker thus uses the application ClassAd to build spe-
cialized LDAP search queries.

The results obtained via these LDAP queries are con-
verted from LDAP Interchange Format (LDIF) into Clas-
sAds and standard Condor mechanisms are invoked to
match the application ClassAd with each ClassAd in the list
of storage system ClassAds. (Note that the storage system
ClassAds comprise their site specific usage policy, as men-
tioned in the sample storage ClassAd in Section 4.) Any
matched ClassAd can be further ranked by querying their
rank attribute. In our case, we rank the replica servers based
on their available space, thus obtaining the “best” match [9].

6 Results

We summarize our initial results based on our experience
in building this prototype.
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We have succeeded in building a replica selection broker
and have demonstrated that this high-level Data Grid ser-
vice can be built using the services provided by the Globus
Data Grid Toolkit, such as: Storage GRIS, GridFTP and
Replica Catalog.

We have further demonstrated the process of: Identifying
characteristics of interest on a storage resource, based on
Storage GRIS and GridFTP protocols; Classifying them as
belonging to appropriate object classes according to LDAP;
Gathering these attributes, via such mechanisms as shell
backend scripts, tuning FTP servers and configuration files;
Publishing the features in a suitable, efficiently queriable
format using LDAP protocol.

We have explored the use of Condor ClassAds as a mech-
anism for expressing storage resource capabilities in the
Grid environment. Although LDAP provides an equiva-
lent method of publishing characteristics in attribute-value
pairs, ClassAds provides a richer matching and ranking en-
vironment. Further, in our prototype implementation, we
have demonstrated that the process of converting data, rep-
resented in LDAP format, into ClassAds is not cumbersome
and is worth the effort. We have, in fact, developed primi-
tive libraries to achieve the conversion of this attribute set.

7 Conclusions and Future Directions

Our current prototype implementation is primarily a
proof of concept of the Globus Data Grid services. As the

next logical step in its development, we need to demonstrate
its applicability in a real application, thereby corroborating
its usefulness. Further improvements can be made with re-
gards to the information published in the storage GRIS. Fi-
nally, the statistical information published by the storage
resource can be fed to an information service, such as the
Network Weather Service [11], to perform predictive anal-
ysis of the behavior of storage resources.
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