
Remote I/O: Fast Access to Distant Storage

Ian Foster David Kohr, Jr.∗ Rakesh Krishnaiyer

Jace Mogill†

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL 60439

Abstract

As high-speed networks make it easier to use distributed re-
sources, it becomes increasingly common that applications
and their data are not colocated. Users have traditionally
addressed this problem by manually staging data to and
from remote computers. We argue instead for a remote I/O
paradigm in which programs use familiar parallel I/O inter-
faces to access remote filesystems. In addition to simplify-
ing remote execution, remote I/O can improve performance
relative to staging by overlapping computation and data
transfer or by reducing communication requirements. How-
ever, remote I/O also introduces new technical challenges in
the areas of portability, performance, and integration with
distributed computing systems. We propose techniques de-
signed to address these challenges and describe a remote
I/O library called RIO that we are developing to evaluate
the effectiveness of these techniques. RIO addresses issues
of portability by adopting the quasi-standard MPI-IO inter-
face and by defining a RIO device and RIO server within the
ADIO abstract I/O device architecture. It addresses per-
formance issues by providing traditional I/O optimizations
such as asynchronous operations and through implementa-
tion techniques such as buffering and message forwarding
to offload communication overheads. Microbenchmarks and
application experiments demonstrate that our techniques
can improve turnaround time relative to staging.

1 Introduction

Improvements in networking and software infrastructure are
making it easier for programmers to execute programs at re-
mote sites and to write programs that use resources at multi-
ple locations. One consequence of remote execution is that

∗Author’s current affiliation: Silicon Graphics Inc., 2011 Shoreline
Blvd., Mountain View, CA 94043.
†Author’s current affiliation: NASA/Goddard Space Flight Cen-

ter, Greenbelt, MD 20771.

a program may be geographically separated from the files
that it accesses. This separation can significantly increase
conceptual and temporal overheads in program development
and execution. Ideally, we would like to enable programs to
access data in a manner independent of data and program
location. In our experience, the key challenges that must be
addressed before we can provide this capability are portabil-
ity (across different networks and filesystems), performance
(in potentially high-latency, low-bandwidth, heterogeneous
networks), and integration into distributed computing envi-
ronments.

Historically, the high-performance computing commu-
nity has achieved remote data access by manually staging
input data from its home filesystem to the computer where
a program is to execute; this process is then reversed for
output data. However, this approach is clumsy, prevents
overlapping of communication and computation, and can
result in excessive data transfer in situations where a pro-
gram accesses only part of a file. Distributed filesystems [18]
also support remote data access, but performance and ad-
ministrative problems often render them inappropriate for
high-performance computing.

We propose an alternative approach to remote data ac-
cess in which programs use remote I/O libraries to access
files located on remote filesystems in a manner that is in-
dependent of physical location. In contrast to distributed
filesystems, remote I/O libraries use parallel I/O interfaces
and focus on high-performance transfer. We believe that this
narrow focus can allow remote I/O libraries to meet require-
ments for performance, flexibility, and convenience without
introducing undue complexity in their implementation.

As part of an investigation of the remote I/O concept,
we have designed and implemented a prototype remote I/O
library called RIO. RIO achieves portability by adopting the
I/O interface defined by MPI-IO [6, 17] and by exploiting
features of the ADIO abstract I/O device [24], providing a
RIO device that translates ADIO calls into communications
to remote RIO servers. Performance issues are addressed
by the use of dedicated forwarder nodes, buffering, and sup-
port for asynchronous and collective operations. RIO uses
the Nexus communication library [12] for client/server com-
munication, hence providing access to configuration and se-
curity mechanisms provided by the Globus wide area com-
puting toolkit [11].

We have performed experiments in a controlled multi-
computer environment to evaluate the effectiveness of our
techniques. Microbenchmarks demonstrate that RIO can



drive networks at close to their peak performance; these ex-
periments also allow us to quantify the benefits of optimiza-
tions such as asynchronous operations. Application experi-
ments illustrate the feasibility of remote I/O in a represen-
tative application. In particular, we demonstrate enhanced
performance relative to staging.

The ideas and results presented in this paper are pre-
liminary, and represent just a first step towards high per-
formance remote I/O. Nevertheless, we believe that the pa-
per makes useful contributions in four related areas. Specif-
ically, we

• introduce the concept of remote I/O, explain why it is
important, and motivate its requirements;

• discuss networking issues that make remote I/O chal-
lenging, and propose library facilities that address th-
ese challenges;

• present experimental results that demonstrate the effi-
cacy of our design techniques, and indicate where more
work is needed; and

• show how to integrate a remote I/O library with mech-
anisms that support operation in a distributed envi-
ronment.

2 The Remote I/O Problem

We first expand upon why remote I/O is important, discuss
networking issues that remote I/O libraries must address,
and review other approaches to the remote data access prob-
lem.

2.1 Motivation

One may wish to use remote computational or data resources
because they provide a unique capability, such as a super-
computer or database, or simply because they are available:
e.g., in a network of workstations, a load-sharing system
such as Condor [16] can map tasks to idle resources. In ei-
ther case, filesystems may be geographically separated from
computers. This need to access “remote” filesystems arises
frequently even within a single site: for example, it is of-
ten undesirable for all filesystems to be crossmounted on
all machines, or even impossible to crossmount specialized
filesystems such as tape archives. In addition, even when
disks are crossmounted, performance may be poor when us-
ing conventional I/O techniques.

Programmers have traditionally resorted to staging tech-
niques when a program and its data are not colocated. How-
ever, there can be significant advantages to having a uniform
interface to local and nonlocal filesystems. As we discuss be-
low in Section 2.3, this uniform interface can be provided in
a number of ways. In the article, we focus on the use of user-
level I/O libraries designed to provide high-performance ac-
cess from parallel programs to remote parallel file systems.
We call these libraries remote I/O libraries, and argue that
they offer performance, flexibility, and convenience advan-
tages relative to existing techniques such as manual staging
and deployment of distributed filesystems.

Performance. Remote I/O can reduce total wall clock
time by allowing overlapping of data transfer and compu-
tation. In a best-case situation, overlapping can reduce exe-
cution time by up to a factor of two. For example, a climate

model that executes for 8 seconds per simulated day requires
8 hours to perform a 10-year simulation. If this model pro-
duces 8 MB output per day, then a 10-year simulation pro-
duces 29 GB of output data and would require an additional
6.4 hours to transfer that data over a 10 Mb/sec network. If,
on the other hand, computation and communication could
be completely overlapped, total turnaround time would be
reduced from 14.4 to 8 hours.

In some situations, remote I/O can reduce total execu-
tion time even without overlap. For example, an OC12 ATM
network provides 80 MB/sec peak throughput, significantly
better than present-day commodity disk drives. Suppose a
system with commodity disks and conventional serial filesys-
tems is connected to a high-speed network, which in turn
provides a datapath to a parallel filesystem. An application
running on such a system could reduce the time spent on I/O
by performing remote I/O on the parallel filesystem. Other
researchers have shown that as network performance has
improved, it has become feasible to assemble collections of
networked workstations whose performance, including I/O,
scales in the same manner as if they were tightly-coupled
multicomputers [8, 25].

Flexibility. Remote I/O can provide a higher-level speci-
fication of I/O operations than does staging and hence per-
mit greater flexibility in terms of how I/O is performed. For
example, a program may need to access just selected com-
ponents of remote data sets. If the identity of those data
elements is computed during program execution, a staging
approach often transfers more data than is necessary, wast-
ing both disk and network resources. In contrast, a remote
I/O library can choose whether to prefetch the entire dataset
or transfer only those elements specifically requested by the
application, depending on available resources. Hibbard et
al. [13] prototyped the latter strategy in the I-WAY net-
working experiment, fetching data from a remote IBM SP
data server only when a user zoomed in on a particular area
within a virtual reality browser.

Convenience. Remote I/O allows programs to execute
at remote sites without programmer management of data
transfer. In contrast, staging can require that the user learn
details of remote filesystems, transfer data among poten-
tially complex directory hierarchies, translate data formats,
and manage multiple copies of their datasets. Norman et
al. [20] report that such issues were a major source of com-
plexity in their distributed simulations of galactic collisions.
A remote I/O library can automate all of these issues, in-
cluding data format conversion if an I/O API is used that
supports file accesses in terms of data types rather than
characters. MPI-IO has this property. In a different regard,
conversations with users reveal that some are uncomfortable
leaving sensitive data in remote file systems, but are happy
to transfer such data over networks to an application, per-
haps over a secure network. Remote I/O makes this transfer
possible without requiring that data be encrypted prior to
writing it to files at a remote site.

Remote I/O also simplifies matters when computation
may be moved between computers, for example in a check-
point/restart system such as Condor. If staging is used, then
input and partial output files must be restaged in order for
the program to be restarted at another location. In con-
trast, a program that uses remote I/O can simply continue
execution and access the same files as before.



Remote I/O also has the advantage of making interme-
diate results available before execution is complete, hence
enabling real-time data analysis and computational steer-
ing. Finally, remote I/O can reduce requirements for often
scarce disk space resources, by avoiding a need to stage data
at remote locations. We often find that users are allocated
significant compute resources at a remote site, but limited
disk resources.

2.2 Wide-Area Computing Issues

Remote I/O libraries, like parallel I/O libraries, must or-
chestrate efficiently the transfer of data between a multi-
processor user application and a filesystem. Remote I/O is
complicated, however, by the following issues not encoun-
tered in typical parallel computing environments. We note
that our investigations thus far with our prototype library
have focused chiefly on performance; we intend to address
the other issues discussed below in future work.

Performance Characteristics. A remote I/O library run-
ning over a continental network can see a combined round-
trip communication and I/O latency of 100 msec. This is
three to four orders of magnitude more than the roundtrip
communication time found in a typical parallel computer
(tens or hundreds of microseconds) and one order of magni-
tude more than the typical time for an I/O node to perform
a disk access on behalf of a compute node (∼10 msec). The
bandwidth offered by the network over which a remote I/O
library operates may be significantly lower than the inter-
nal communication network of a parallel computer; however,
rapid increases in the speed provided by local and wide area
networks will soon lead to situations in which the networks
used within and outside parallel computers have comparable
performance. For example, an OC48 ATM network provides
310 MB/sec, better than many contemporary multiproces-
sors, and also faster than many file systems.

Heterogeneity and Configuration. The computer, net-
work, and storage systems used by a remote I/O system of-
ten include a heterogeneous mixture of hardware, software,
and protocols. In such environments, selecting optimal I/O
strategies is more difficult than in the relatively homoge-
neous environments in which parallel I/O libraries typically
operate. A related issue is that the quality of service (QoS:
e.g., average bit rate, or reliability) offered by the remote
I/O network may be extremely variable, in which case we
may require specialized techniques to shield an application
from this variability, for example, buffering, or creating lo-
cal copies to avoid loss of data over unreliable links. Al-
ternatively, QoS may be controllable by a remote I/O li-
brary or user application, in which case accurate estimates
of QoS requirements can improve both overall application
performance and resource utilization.

Naming and Security. Remote I/O systems often con-
nect computers and filesystems located in different admin-
istrative domains. This causes difficulties for both naming
and security. We require a global name space for files, but
different sites will use different filesystem structures. While
distributed filesystems such as AFS create a global struc-
ture, we may not have that luxury. Uniform Resource Loca-
tors (URLs) represent an alternative approach. In addition,

authentication, authorization, and privacy all become prob-
lematic issues in a distributed environment.

Fault tolerance. Distributed systems are inherently less
reliable than nondistributed systems. For convenience and
to ensure the integrity of data files, it is desirable for re-
mote data access systems to tolerate brief, transient failures
of networks and hosts. In case of more severe errors, it
should be feasible to restart failed operations, such as from
a checkpoint of an application’s internal state. At the same
time, the performance characteristics of distributed systems
can motivate the use of strategies such as caching that can
complicate recovery from failures.

2.3 Approaches to Remote Data Access

Other approaches to the remote data access problem fall
into three general categories: distributed filesystems, paral-
lel filesystems, and remote execution systems.

Traditional distributed filesystems (NFS [21] to some ex-
tent, and AFS [18] and DFS to a greater extent) provide a
convenient interface for remote I/O: a uniform file name
space is provided, and files are accessed with conventional
read and write statements. However, these systems typically
do not achieve good performance for high-performance com-
puting workloads: they were designed primarily for a differ-
ent class of users, e.g., software developers. For example,
NFS bandwidth over an Ethernet LAN may be 1-3 Mb/sec,
but an optimized communication library can achieve close
to 10 Mb/sec. The lack of explicit interfaces for collective
I/O also hinders performance optimization. In addition,
distributed filesystems introduce significant implementation
complexity and administrative overhead, which tend to hin-
der their widespread deployment. Web-based distributed
file systems [1, 27] reduce implementation and administra-
tion costs but do not improve performance. Data servers
such as DPSS [25] and MARS [4] use networked disk servers
to provide high-speed streaming access to distributed data,
but do not provide specialized support for access from par-
allel programs.

In contrast, parallel filesystems (e.g., [19, 7]) and I/O
libraries (e.g., [3, 6, 22]) address performance issues directly
by defining I/O interfaces that allow identification and opti-
mization of collective I/O operations, by incorporating spe-
cialized buffering techniques, by supporting asynchronous
operations, and by incorporating techniques (e.g., disk-dir-
ected [15], server-directed [22], and two-phase [23] I/O) for
transferring data efficiently from compute nodes to disks.
However, these systems are not designed to address the com-
plex configurations, unique performance tradeoffs, and secu-
rity problems that arise in wide area environments.

Finally, remote execution systems such as Condor [16]
and WebOS [27] redirect Unix filesystem calls to a home
filesystem, hence enabling location-independent execution
of tasks scheduled to remote computers. However, these
systems do not support parallel I/O interfaces or access to
parallel filesystems.

In summary, existing techniques address issues relating
either to distributed execution or to parallel performance,
but not both. What is lacking is an approach that provides
the high-performance characteristics of parallel I/O libraries
while addressing the unique requirements of networked en-
vironments. This is the goal of our remote I/O work.



3 The RIO Remote I/O Library

To support our investigations of remote I/O, we have devel-
oped a remote I/O library called RIO. In this section, we de-
scribe how RIO addresses issues of portability, performance,
and integration with wide area computing environments.

3.1 Portability of Interface

An I/O library is most useful if it supports both a wide range
of application I/O patterns and multiple filesystems. It is
not our goal to innovate in the area of I/O interfaces, and so
we adopt the quasi-standard MPI-IO [6, 17]. This interface
incorporates support for collective operations, asynchronous
operations, and other I/O abstractions that have been found
useful for high-performance parallel I/O. Whether the re-
quirements of remote I/O motivate modifications or extens-
ions to the MPI-IO interface remains to be seen, but our
initial approach is to use MPI-IO unchanged.

We use the small code fragment of Figure 1 to illustrate
the MPI-IO interface and its use in parallel programs. This
Fortran code fragment is taken from an application called
BTIO, which we discuss in more detail in Section 4.3. This
program is designed to be executed by multiple processes.
In brief, the program first opens a file for writing by calling
MPI Open, specifies the place at which writing should occur
by calling MPI File set view, repeatedly writes the file by
calling MPI File write at, and finally closes the file by call-
ing MPI Close.

We now describe the various MPI-IO calls in more de-
tail. The MPI Open call is used to open the file. Its argu-
ments specify an MPI communicator representing the set of
processes on which the file is to be opened (comm solve),
the file name (filenm), the mode in which the file is to be
opened (for writing, in our case), an array of hints (here
empty), and two output arguments: the file pointer and an
error code. This function must be called collectively by all
processes in the process group represented by comm solve,
with all processes passing the same values for the input ar-
guments. The call opens the file and creates a distinct file
pointer for each process, with all file pointers initially point-
ing to the beginning of the file.

The MPI File set view routine changes the processes’
view of the data in the file. This call can be used to provide
different processes with different views; here, we indicate
that all processes are to view the file as an array of double
precision values. This call is also collective. Finally, the
MPI File write at routine writes the solution array to the
file. This call is not collective, and so can be called and is
executed independently by each process.

3.2 Portability of Implementation

Portability is a challenging problem in a remote I/O library
because there may be no commonality in architecture be-
tween the computer on which an application runs and the
potentially many remote filesystems that the program ac-
cesses. We address the portability problem by exploiting
features of the ADIO implementation of MPI-IO [24]. ADIO
adopts a modular design in an attempt to maximize code
reuse across filesystems. High-level I/O libraries (in our
case, MPI-IO) invoke services provided by a set of ADIO
“devices,” each providing low-level support for a particular
I/O system (e.g., Unix, Intel PFS, IBM PIOFS).

As illustrated in Figure 2, RIO exploits the ADIO frame-
work in two ways. On the client side, we provide a RIO
device that implements ADIO calls as interactions with re-
mote RIO servers. The servers themselves also use ADIO
calls, in this case to access the remote filesystem in a system-
independent fashion. This approach of simultaneously lay-
ering below ADIO (on the client side) and above ADIO (on
the server side) greatly reduces implementation costs. On
the client side, we need not implement all of MPI-IO nor be
concerned with remote filesystem details. Instead, we can
focus our attention on a small number of portable low-level
functions. On the server side, we can operate on any system
supported by ADIO.

3.3 Performance

A remote I/O library can use various strategies to transfer
data between client and server. Research in parallel I/O
has identified collective operations, nonblocking operations,
and buffering as important techniques for maximizing per-
formance on parallel filesystems. All of these techniques can
improve the performance of applications that access remote
data. We provide collective and nonblocking operations in
RIO. However, as we shall see, the characteristics of net-
worked systems favor designs that differ substantially from
those for parallel filesystems.

Our RIO prototype uses the Nexus communication li-
brary [12] for client-server communications; Nexus, MPI, or
potentially other communication mechanisms may be used
within an application. When opening a file, a designated
client process first attempts to connect to a server gateway
process. The client and server then exchange information
about file type and file access patterns, and the server issues
an ADIO open call to open the relevant file(s). The client
and server then establish the communication structure to
be used for subsequent read and write operations. Finally,
both client and server establish local data structures repre-
senting the open file; on the client side, a “file descriptor” is
returned, encoding a reference to the client-side data struc-
ture.

Let PC denote the number of processes executing at the
client and PS the number at the server. Following an open
call, each client process can read and write at a distinct
location in the file, using either collective or non-collective
I/O operations. In a simple implementation of remote I/O,
each client process keeps track of its own location within the
file, and implements a read or write operation as a separate
remote procedure call (i.e., a round-trip communication) to
a server process, regardless of whether the operation was
collective. A round trip is required even for write calls, in
order to provide a return code.

An analysis of the various inefficiencies inherent in this
simple approach allows us to introduce some of the opti-
mizations used in RIO.

Forwarder Nodes. Client and server processes commu-
nicate directly. A disadvantage of this strategy is that a
single process may have to use two communication meth-
ods: e.g., on the IBM SP, a vendor-supplied MPI library
and TCP/IP. This simultaneous use can introduce signifi-
cant overheads due to the need to manage two communi-
cation interfaces [10] or may be disallowed entirely if net-
work interfaces can be accessed only from dedicated service
nodes. Hence, we introduce forwarder nodes (analogous to



call MPI_Open(comm_solve, filenm, MPI_WRONLY+MPI_CREATE,
$ MPI_INFO_NULL, fp, ierr)

call MPI_File_set_view(fp, 0, MPI_DOUBLE_PRECISION,
$ MPI_DOUBLE_PRECISION, MPI_INFO_NULL, ierr)

call initialise

...

do step = 1, niter
call adi
if (mod(step, wr_interval) .eq. 0) then

call MPI_File_write_at(fp, iseek, u(1,0,jio,kio,cio), count,
$ MPI_DOUBLE_PRECISION, mstatus, ierr)

endif
enddo
call MPI_Close(fp, ierr)

Figure 1: Code fragment from an application (BTIO) showing use of MPI-IO calls

R I O
device

Application Programs RIO server

A D I O

P I O F S

PIOFS
Device

NFS
device

R I O
device

A D I O

MPI-IO

Figure 2: RIO architecture, showing how RIO layers below ADIO in the client and above ADIO in the server



the dedicated I/O nodes used in some I/O systems), to wh-
ich each client process forwards communications destined
for the server, and which handles communications from the
server to client processes. These forwarder nodes must use
both MPI and TCP, but are dedicated and hence can be op-
timized for this purpose. The forwarder nodes can also be
used to throttle traffic to avoid network saturation [26]. In
our current work, the client and server each use a single for-
warder. However, multiple forwarders can be advantageous
if there are multiple network interfaces or if compression,
message digest, or encryption techniques are to be applied
to data.

Exploitation of Collective Operations. In the simple
implementation scheme outlined above, each client process
communicates independently with the server, even when en-
gaged in a collective operation. Hence, a single client-side
collective call requires PC messages and results in PC in-
dependent I/O operations at the server. Both the multiple
communications and multiple I/O operations can be ineffi-
cient in some situations. Multiple communications can be
avoided by collecting the communications performed by the
PC clients (e.g., at the forwarder) and transferring them to
the server in a single message. Multiple server I/O opera-
tions can be avoided by tagging client messages to indicate
when they refer to collective calls, and then invoking a col-
lective I/O operation at the server. The latter strategy is
straightforward if PS = PC , since the server can issue open,
read, and write operations identical to those performed by
the client. The situation remains straightforward if PC is
an integer multiple of PS, or vice versa, as the calls issued
by the client are easily mapped to server processes. In other
situations, it can be hard to translate a client-side collective
operation into an efficient collective operation at the server.

Reduction of Round-Trip Costs. The round trip per-
formed for each read and write operation can take 100 msec
or more in a wide area environment, significantly more than
an I/O operation. RIO seeks to reduce these costs by incor-
porating support for asynchronous I/O operations. Asyn-
chronous operations allow several I/O operations to be out-
standing at once, hence enabling pipelining of I/O opera-
tions in the network and I/O system, and overlapping of
computation and I/O in the application. An asynchronous
operation is initiated in RIO by sending the usual request
message from the client node to its forwarder in a nonblock-
ing fashion, so that control returns immediately to the ap-
plication. The operation completes when the reply message
arrives at the client node. The application can test or wait
for completion using standard MPI-IO calls.

Another approach that we have yet to evaluate is to re-
duce the number of communication operations by client-side
buffering, either independently by each client process, col-
lectively by multiple client processes, or by the forwarder.
Another interesting possibility that needs to be explored
further is to use as a cache the potentially large aggregate
memory or local disk space of the parallel computer on wh-
ich the application runs. These approaches appear partic-
ularly important in situations where a program reads the
same file multiple times. Here, a staging approach might
perform much better than a simple remote I/O library that
performs no caching. However, a sophisticated remote I/O
library could in principle stage the file to local memory or
disk and keep it there, if it were able to determine that re-

peated reads were to be performed.
Figure 3 outlines the structure that results when we in-

troduce these three optimizations. The figure shows the
client-side buffers (here associated with client processes), the
forwarder processes, and the translation of a client-side col-
lective I/O call (MPI READ ALL) into a collective I/O call at
the server.

3.4 Integration

Because RIO is designed to execute in a wide area envi-
ronment, its implementation must address issues of naming,
configuration, and security. In the following, we explain how
these issues can be addressed by using mechanisms provided
by the Globus distributed computing toolkit [11].

Naming. RIO uses a URL-like notation to provide a uni-
form name space for files. A file is opened with a call of the
form

MPI Open(..., "x-rio://host:port-num/path", ...)

where the host and port-num identify a RIO server and path
identifies a file managed by that server. In the future, we
may substitute Uniform Resource Names (URNs) for URLs,
to permit location-independent naming of cachable or repli-
cated resources such as databases.

Configuration. RIO permits the use of Globus configura-
tion mechanisms. For example, when establishing a Nexus
connection between client and server, RIO can use the Meta-
computing Directory Service (MDS) [9] to determine net-
work availability, current load, and access mechanisms. RIO
also can interact with Globus schedulers to reserve capacity
on networks that support quality of service negotiation.

Security. A remote I/O system may be required to verify a
user’s identity (authentication), to determine whether and
how a user is able to access a file (authorization), and to
ensure the integrity and privacy of data transferred over
public networks. We design RIO to incorporate the solutions
to these problems provided by Globus.

The current Globus system supports a global “Globus id”
but requires that a user have an account at a site before it
can use that site’s resources. Globus provides a cryptograph-
ically secure mapping from Globus id to local ids, hence
allowing a user to authenticate once (to Globus) and subse-
quently access resources at any Globus site where the user
has an account. These mechanisms can easily be adapted
for use by RIO. Authentication is performed by Nexus when
a RIO client connects to a RIO server. If authentication
succeeds, the local user id of the Globus user is also estab-
lished, and hence the file access rights of the Globus user at
that site are determined. Once authentication is in place,
Globus/Nexus mechanisms can be used to apply digital sig-
natures for message integrity and/or encryption for privacy.
If desired, these mechanisms can be applied only when com-
municating over networks defined to be insecure.

In the longer term, we expect Globus—and hence RIO—
to eliminate the requirement that a user have a local account
at every site. Access control lists are one approach to au-
thorization in this regime. Cryptographically signed “use
condition certificates” [14] represent another promising ap-
proach.



Figure 3: RIO’s optimized I/O strategy, showing the client (C), forwarder (F), and server (S) processes, and the communica-
tions performed following a collective read operation.

4 Experimental Studies

We report on experiments designed to determine the basic
performance characteristics of RIO and to provide a pre-
liminary evaluation of RIO’s utility for applications. These
experiments comprise a series of microbenchmarks similar
to those used traditionally for evaluation of I/O library per-
formance, plus a single application.

4.1 Experimental Platform

In selecting an experimental platform, we must trade off our
interest in exploring true remote I/O against the need for
a controlled environment in which the impacts of different
performance issues can be easily measured. These consider-
ations motivate us to define a testbed comprising two parti-
tions of the same IBM SP multicomputer. Within each par-
tition, communication can occur via vendor-supplied MPI,
while TCP/IP (over the high-performance switch) is used
between partitions. The client runs in one partition and
the server in the other. Because of our use of forwarder
nodes, this simple configuration has performance character-
istics similar to (though somewhat better than) two IBM
SPs connected by a high-bandwidth local or metropolitan
area network. While intrapartition communication peaks at
over 55 MB/sec with latencies of around 50 µsec, interpar-
tition communication peaks at 22 MB/sec with latencies of
around 320 µsec.

All experiments were performed on the IBM SP2 at Ar-
gonne National laboratory and used IBM PIOFS version
1.2 as the “remote” filesystem. All nodes used in our exper-
iments were SP thin nodes (roughly equivalent to RS/6000
Model 390, with at least 256 MB memory) running AIX 4.2.
PIOFS distributes files across multiple PIOFS servers [2].
At ANL, there are 4 such servers and each server has four 9
gigabyte SSA disks attached to it. Each file consists of a set
of cells, and each cell is stored on a particular server node.
The default number of cells is the number of PIOFS servers;
if the number is greater, cells are striped across servers in
a round-robin fashion. A file is divided into basic striping
units (BSUs), which are assigned to cells in a round-robin

fashion. The default BSU size is 32 KB. In some situations,
tuning of these various parameters can significantly affect
performance. We used default values in all experiments.

PIOFS performance is sensitive to the size of the data
being read and written. Small (< 8 KB) accesses that do
not hit in the disk block cache require roughly 2 msec. Much
higher performance can be achieved for larger read and write
sizes.

4.2 Microbenchmark Results

Our microbenchmarks are designed to reveal how RIO read
and write bandwidths vary as functions of PC and read
or write size. Each microbenchmark uses repeated read or
write operations to transfer contiguous chunks of data from
or to a single shared file. The bandwidth is measured by
dividing the amount of I/O performed by the elapsed time
as seen at the client side. We show results from using both
RIO blocking and nonblocking operations. In the case of
nonblocking operations, the elapsed time includes the time
required to complete all outstanding I/O requests. Each
measurement represents the average of a large number (typ-
ically a thousand or more) transfers; the number of trans-
fers is chosen such that each experiment runs for at least a
minute.

There is significant variation in the times obtained for
large transfer sizes, probably due to contention at the PIOFS
server nodes. All experiments were performed without any
dedicated access to the SP, so there is contention with other
jobs accessing PIOFS and the high performance switch.

Figure 4 shows the transfer rates (totals summed over PC
processes) that we measured for PC = PS=1, 2, and 4, using
RIO blocking calls for different access sizes. It also shows
the I/O bandwidth obtained from using PIOFS directly us-
ing PC processes. We also include in the graph horizontal
lines representing the bandwidth measured with two simple
ping-pong programs. The line labeled “Client/server for-
warding” was obtained with a program that bounces large
messages between a client process and a server process, via
the intervening forwarders. Hence, it approximates the best
data transfer rate that can be obtained for synchronous op-



10
2

10
3

10
4

10
5

10
6

Transfer size in bytes

0.0

10.0

20.0

30.0

40.0

10
2

10
3

10
4

10
5

10
60.0

10.0

20.0

30.0

40.0

50.0

T
ra

ns
fe

r 
ra

te
 in

 M
B

/s
ec

.

10
2

10
3

10
4

10
5

10
60.0

20.0

40.0

60.0

80.0

100.0
PIOFS write
PIOFS read
RIO blocking write
RIO blocking read
Client/server forwarding
TCP peak

1 Processor

4 Processors

2 Processors

Figure 4: I/O performance as measured with microbenchmark programs that use (a) local PIOFS, on P = 1, 2, and 4
processors; and (b) blocking RIO calls, with PC = PS = 1, 2, and 4. Also shown is the performance achieved by the
client-server forwarding and TCP peak benchmarks described in the text.



erations between a single client and a single server in our
architecture. The line labeled “TCP peak” was obtained
with a simpler program that uses TCP to bounce large mes-
sages back and forth between two processes. The first num-
ber (12.0 MB/sec) is less than the second (21.4 MB/sec) be-
cause in the latter case, a round-trip client/server communi-
cation involves just two messages, while in the former, there
are four additional messages: outbound and inbound mes-
sages between forwarder and nonforwarder nodes at both
the client and server.

Examining Figure 4, we see that PIOFS performance
increases with the number of processors, reaching around
80 MB/sec with four application nodes. These results match
those of other researchers. RIO sustained bandwidth for
PC = PS = 1 increases with data size, but does not ex-
ceed the client/server forwarding bandwidth of 12.0 MB/sec.
This result is to be expected as the forwarding bandwidth
is also measured with a similar configuration of one client
and one server process. For larger numbers of clients, we
are able to exceed this bandwidth, as the increased number
of messages enhances pipelining of communications. Never-
theless, the maximum bandwidth is still limited by the link
between the forwarders. We obtain a peak RIO bandwidth
of around 18 MB/sec when PC = PS = 2 and 26 MB/sec
when PC = PS = 4.

In the next set of experiments, we fixed the number of
server nodes at two and measured RIO bandwidth for dif-
ferent numbers of client processes, using both blocking and
nonblocking operations. Figure 5 shows the transfer rates
(totals summed over PC processes) measured for different
access sizes. The top row shows results obtained using non-
blocking RIO calls and the bottom row displays the per-
formance using blocking RIO calls.

In general, nonblocking RIO outperforms the blocking
version, with peak values of 26 MB/sec and 22 MB/sec ob-
tained for read and write operations respectively. We also
observe that when using nonblocking calls, performance is
limited by the forwarder link for large transfer sizes even
with only two server nodes. The optimum number of server
nodes to be used in a given system depends on the per-
formance characteristics of the RIO network and the appli-
cation I/O request sizes, but it seems likely that it will often
be small.

These results show that RIO is able to drive the single
TCP connection between the clients and servers at close to
its peak bandwidth, at least for large messages. We see also
that in our experimental configuration, the principal obsta-
cle to improved performance is the capacity of this network.
Faster networks and improved forwarder structures are two
possible approaches to improving performance. We can de-
rive maximum advantage from RIO by using asynchronous
operations; much of the performance improvement in this
case comes from the pipelining of requests along the path
from clients to servers. As we shall see in the next section,
this advantage is even greater if an application can be struc-
tured so as to permit overlap of computation with I/O.

4.3 Application Results

We use the BTIO benchmark from the NAS I/O benchmark
suite [5], specifically, the program BTIO-simple-mpiio. This
benchmark simulates the I/O required by a pseudo-time-
stepping flow solver. It implements an approximate factor-
ization algorithm with the requirement that after every k it-
erations, a three-dimensional solution vector—of size N3—is

written to a disk file. A total of I iterations of the algorithm
are performed. The application code is in Fortran and uses
the MPI-IO interface to write output data to a single file.
The application does not perform any read operations.

In our experiments, we consider problem sizes N = 32,
64, and 80; total data written in these three cases is 52 MB,
420 MB, and 1 GB, respectively. We define the elapsed
time as the wall clock execution time for the application
(including both computation and I/O), and the application
sustained I/O transfer rate as the total amount of I/O per-
formed divided by the total elapsed time. The elapsed time
includes both the time for computation and I/O inside the
application, and so the resulting I/O transfer rate is differ-
ent from that measured in the microbenchmarks, where no
significant computation is performed.

BTIO-simple-mpiio performs many small writes in an
irregular pattern and hence performs poorly on PIOFS, due
to the high PIOFS overhead associated with small writes.
Hence, we produced a modified version of the benchmark
that redistributes the output data before the solution vector
is written to disk. In the optimized code, each node essen-
tially collects data from other nodes into a temporary con-
tiguous write buffer; each processor then performs a single
write operation at each dump. This optimization might well
be performed automatically by an MPI-IO implementation
of collective write. However, the MPI-IO implementation
used in our studies did not incorporate this optimization at
the time we made these measurements.

We use four processors to execute the application in all
experiments. We also use four server nodes for those exper-
iments performed with the original version of the code; for
the optimized version, just one server node is used, because
the optimized version performs I/O in larger chunks and so
the network becomes the bottleneck in those cases. We have
observed similar behavior to that reported below when us-
ing different numbers of application and server processors,
and hence for brevity, we do not report those results.

We measure elapsed time for four configurations: when
using PIOFS directly (i.e., without using RIO); when using
RIO (blocking calls) to transfer data from the application
to the RIO server, which then makes the PIOFS calls; when
using RIO (nonblocking calls); and when data is first writ-
ten to PIOFS directly, without RIO, and then transferred
to a user filesystem with ftp. The latter configuration cor-
responds to the use of manual staging. The column labeled
Compute gives the execution time for the application when
no I/O is performed, and the last column indicates the per-
centage improvement over PIOFS+ftp obtained when using
nonblocking RIO. In the nonblocking RIO version of the
original code, up to 64 I/O operations may be outstanding
at once. In the nonblocking RIO version of the optimized
code, we issue an asynchronous write for each dump and
then proceed with computation, waiting for completion only
at the start of the next dump. This operation can be asyn-
chronous because writes are performed from the temporary
write buffer.

Tables 1 and 2 show the elapsed times and application
sustained transfer rates measured for both the original and
optimized versions of the program. The optimized version
of BTIO performs better than the original, due to the re-
duced number of write operations. We see that nonblocking
calls significantly affect performance in all cases. This is
because in the absence of nonblocking calls, the round-trip
message exchange between application and server is a sig-
nificant source of overhead. When nonblocking operations



10
2

10
3

10
4

10
5

10
6

Transfer size in bytes

0.0
5.0

10.0
15.0
20.0
25.0

T
ra

ns
fe

r 
ra

te
 in

 M
B

/s
ec

.

8 clients 
4 clients
2 clients
Client/server forwarding
TCP Peak

10
2

10
3

10
4

10
5

10
60.0

5.0
10.0
15.0
20.0
25.0

10
2

10
3

10
4

10
5

10
60.0

5.0
10.0
15.0
20.0
25.0

10
2

10
3

10
4

10
5

10
60.0

5.0
10.0
15.0
20.0
25.0

RIO non−blocking read RIO non−blocking write

RIO blocking read RIO blocking write

Figure 5: I/O performance as measured with blocking and nonblocking versions of a RIO microbenchmark, with a fixed
PS = 2 and for PC = 2, 4, and 8.

Table 1: Execution times in seconds for the original and optimized BTIO application.

Version N I k Compute Local PIOFS PIOFS+ftp RIO (blocking) RIO (nonblock) Improvement
Original 32 200 5 86.84 206.12 211.97 199.98 196.06 8.1%
Original 64 200 5 624.52 837.60 883.26 987.18 941.98 –6.2%
Original 80 50 1 304.04 857.75 968.86 1080.66 959.21 1.0%
Optimized 32 200 5 86.84 100.06 105.91 107.52 89.42 18.4%
Optimized 64 200 5 624.52 668.84 722.30 676.78 648.40 11.4%
Optimized 80 50 1 304.04 424.71 535.82 487.98 442.65 21.0%



Table 2: Application sustained I/O transfer rates for the original and optimized BTIO applications, in MB/sec).

Version N I k Local PIOFS PIOFS+ftp RIO (blocking) RIO (nonblock)
Original 32 200 5 0.2543 0.2473 0.2622 0.2674
Original 64 200 5 0.5008 0.4749 0.4249 0.4453
Original 80 50 1 1.1938 1.0569 0.9476 1.0676
Optimized 32 200 5 0.5240 0.4950 0.4876 0.5863
Optimized 64 200 5 0.6271 0.5807 0.6197 0.6469
Original 80 50 1 2.4111 1.9110 2.0984 2.3133

are used, performance improves because multiple I/O opera-
tions are pipelined (as in the original code) and because I/O
and round-trip overheads are overlapped with computation
(as in the optimized code). As a result, throughput is close
to what we get when accessing PIOFS directly. In fact, be-
cause PIOFS does not support nonblocking operations, RIO
performs better than local PIOFS in some cases. The max-
imum application sustained transfer rate is 2.41 MB/sec for
local PIOFS and 2.31 MB/sec for RIO.

Finally, we see that the total execution time when using
RIO is, in most cases, less than the total turnaround time
when staging is used (PIOFS+ftp). For the optimized code
with N = 80, RIO is 21 percent faster. This result is due to
the overlapping of computation and data transfer achieved
by RIO and illustrates how remote I/O can improve applica-
tion performance compared with traditional techniques for
remote data access, while at the same time providing a more
convenient interface.

5 Conclusions

We have argued for the importance of remote I/O as a tool
for high-performance, low-overhead distributed computing.
Remote I/O libraries allow programs to use familiar parallel
I/O interfaces to access data contained in remote filesys-
tems. In principle, they can improve performance, enhance
flexibility, and reduce complexity in applications that must
access nonlocal data. We have identified some of the chal-
lenges that must be overcome before these benefits can be
realized; these include high latencies, low bandwidths, com-
plex configurations, and security. We have also described a
prototype remote I/O library called RIO that incorporates
solutions to some of these problems. Performance experi-
ments in a controlled multicomputer environment show that
RIO introduces little overhead and can achieve improved
turnaround time compared to remote execution combined
with staging.

The work presented here is just a first step toward a truly
usable remote I/O facility for high-performance computing
applications. Our next step will be to deploy the RIO proto-
type in a wide area computing testbed. Our first target is the
sites connected by the ESnet and CAIRN networks, in par-
ticular Argonne, Berkeley, and USC/ISI. This environment
will enable us to evaluate our techniques more realistically.
We are particularly interested in understanding how well
applications perform when using remote I/O techniques in
high-latency environments. The seamless access to remote
file systems provided by RIO is less useful if the program-
mer must use different program structures and algorithms
to achieve acceptable performance in low-latency and high-
latency environments. Hopefully, appropriate prefetching

and caching strategies in the remote I/O library will miti-
gate the impact of high latency, but this remains to be seen.

Another set of experiments that we plan to conduct in
wide area testbeds is a detailed comparison with distributed
filesystems for a range of scientific applications. We are
interested in understanding the regimes in which distributed
file systems and remote I/O perform more effectively. This
work may motivate proposals for alternative data transfer
mechanisms in distributed file systems.

A final issue that we want to investigate relates to net-
work quality of service. Because wide area networks are
typically shared media, communication performance can be
variable. In our experiments to date, we have not considered
the impact of this variability on performance. We propose to
study the impact of network performance variability on I/O
performance and to examine the feasibility of using network
quality of service reservation techniques to improve network
predictability. One issue to be considered here is whether
current quality of service classes are appropriate for remote
I/O. We are also interested in determining whether it is fea-
sible to use adaptive techniques in the remote I/O library
or in the application to provide more robust performance in
the face of variability.

Acknowledgments

We thank David Lifka, Rajeev Thakur, and Steven Tuecke
for their invaluable assistance with this work, and the Cor-
nell Theory Center and Argonne National Laboratory’s Cen-
ter for Computational Science and Technology for access to
their IBM SP systems. The paper was much improved by
numerous insightful comments from Orran Krieger.

This research was supported by the Mathematical, Infor-
mation, and Computational Sciences Division subprogram
of the Office of Computational and Technology Research,
U.S. Department of Energy, under Contract W-31-109-Eng-
38, in support of the multiagency Scalable I/O project.

References

[1] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J.
Scheiman. Extending the operating system at the user
level: The UFO global file system. In 1997 Annual
Technical Conference on UNIX and Advanced Comput-
ing Systems (USENIX’97), January 1997.

[2] F. Bassow. IBM AIX Parallel I/O File System: Instal-
lation, Administration, and Use. IBM, Kingston, N.Y.,
May 1995. Document Number SH34-6065-00.

[3] R. Bennett, K. Bryant, A. Sussman, R. Das, and
J. Saltz. Jovian: A framework for optimizing paral-



lel I/O. In Proceedings of the 1994 Scalable Parallel
Libraries Conference, pages 10–20. IEEE Computer So-
ciety Press, October 1994.

[4] M. Buddhikot, G. Parulkar, and J. Cox. Design of a
large scale multimedia storage server. In Proc. INET
’94, 1994.

[5] R. Carter, B. Ciotti, S. Fineberg, and B. Nitzberg.
NHT-1 I/O benchmarks. Report RND-92-016, NAS,
NASA Ames Research Center, Moffett Field, CA, Nov
1992.

[6] P. Corbett, D. Feitelson, Y. Hsu, J.-P. Prost, M. Snir,
S. Fineberg, B. Nitzberg, B. Traversat, and P. Wong.
MPI-IO: A parallel file I/O interface for MPI. Tech-
nical Report NAS-95-002, NAS, NASA Ames Research
Center, Moffett Field, CA, January 1995. Version 0.3.

[7] P. Corbett, D. Feitelson, J.-P. Prost, and S. Baylor.
Overview of the Vesta parallel file system. In IPPS
’93 Workshop on Input/Output in Parallel Computer
Systems, pages 1–16, 1993.

[8] M. Dahlin, C. Mather, R. Wang, T. Anderson, and
D. Patterson. A quantitative analysis of cache poli-
cies for scalable network file systems. In Proc. 1994
ACM SIGMETRICS Conference on the Measurement
and Modeling of Computer Systems, pages 150–160,
1994.

[9] S. Fitzgerald, I. Foster, C. Kesselman, G. von
Laszewski, W. Smith, and S. Tuecke. A directory ser-
vice for configuring high-performance distributed com-
putations. In Proc. 56h IEEE Symp. on High Per-
formance Distributed Computing, pages 365–375. IEEE
Computer Society Press, 1997.

[10] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke.
Managing multiple communication methods in high-
performance networked computing systems. Journal of
Parallel and Distributed Computing, 40:35–48, 1997.

[11] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of Super-
computer Applications, 11(2):115–128, 1997.

[12] I. Foster, C. Kesselman, and S. Tuecke. The Nexus
approach to integrating multithreading and communi-
cation. Journal of Parallel and Distributed Computing,
37:70–82, 1996.

[13] W. Hibbard, J. Anderson, I. Foster, B. Paul, C. Schafer,
and M. Tyree. Exploring coupled atmosphere-ocean
models using Vis5D. International Journal of Super-
computer Applications, 10(2):211–222, 1996.

[14] W. Johnston and C. Larsen. A use-condition centered
approach to authenticated global capabilities: Security
architectures for large-scale distributed collaboratory
environments. Technical Report 3885, LBNL, 1996.

[15] D. Kotz. Disk-directed I/O for an out-of-core compu-
tation. In Proc. 4th IEEE Symp. on High Performance
Distributed Computing, pages 159–166, August 1995.

[16] M. Litzkow, M. Livney, and M. Mutka. Condor - a
hunter of idle workstations. In Proc. 8th Intl Conf. on
Distributed Computing Systems, pages 104–111, 1988.

[17] Message Passing Interface Forum.
MPI-2: Extensions to the Message-Passing Interface,
1997. http://www.mpi-forum.org.

[18] J. Morris, M. Satyanarayanan, M. Conner, J. Howard,
D. Rosenthal, and F. Smith. Andrew: A distributed
personal computing environment. Communications of
the ACM, 29(3):184–201, 1986.

[19] Nils Nieuwejaar and David Kotz. The Galley parallel
file system. Parallel Computing, 23(4):447–476, June
1997.

[20] M. Norman, P. Beckman, G. Bryan, J. Dubinski,
D. Gannon, L. Hernquist, K. Keahey, J. Ostriker,
J. Shalf, J. Welling, and S. Yang. Galaxies collide on the
I-WAY: An example of heterogeneous wide-area collab-
orative supercomputing. International Journal of Su-
percomputer Applications, 10(2):131–140, 1996.

[21] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and
B. Lyon. Design and implementation of the Sun net-
work filesystem. In Proc. Summer USENIX, pages 119–
130, June 1985.

[22] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and
M. Winslett. Server directed collective I/O in Panda.
In Proceedings of Supercomputing ’95, San Diego, Cal-
ifornia, December 1995.

[23] R. Thakur and A. Choudhary. An extended two-phase
method for accessing sections of out-of-core arrays. Sci-
entific Programming, 5(4):301–317, Winter 1996.

[24] R. Thakur, W. Gropp, and E. Lusk. An abstract-device
interface for implementing portable parallel-I/O inter-
faces. In Proceedings of The 6th Symposium on the
Frontiers of Massively Parallel Computation, October
1996.

[25] B. Tierney, W. Johnston, L. Chen, H. Herzog, G. Hoo,
G. Jin, and J. Lee. Distributed parallel data storage sys-
tems: A scalable approach to high speed image servers.
In Proc. ACM Multimedia 94. ACM Press, 1994.

[26] B. Tierny, W. Johnston, J. Lee, and G. Hoo. Per-
formance analysis in high-speed wide area IP over ATM
networks: Top-to-bottom end-to-end monitoring. Tech-
nical report, LBNL, 1996.

[27] A. Vahdat, P. Eastham, and T. Anderson. WebFS:
A global cache coherent filesystem. Technical report,
Department of Computer Science, UC Berkeley, 1996.


