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Abstract

We describe a software infrastructure designed to support the development of applica-

tions that use high-speed networks to connect geographically distributed supercomputers,

databases, and scienti�c instruments. Such applications may need to operate over open

networks and access valuable resources, and hence can require mechanisms for ensuring

integrity and con�dentiality of communications and for authenticating both users and

resources. Yet security solutions developed for traditional client-server applications do

not provide direct support for the distinctive program structures, programming tools,

and performance requirements encountered in these applications. To address these re-

quirements, we are developing a security-enhanced version of a communication library

called Nexus, which is then used to provide secure versions of various parallel libraries

and languages, including the popular Message Passing Interface. These tools support the

wide range of process creation mechanisms and communication structures used in high-

performance computing. They also provide a �ne degree of control over what, where,

and when security mechanisms are applied. In particular, a single application can mix

secure and nonsecure communication, allowing the programmer to make �ne-grained se-

curity/performance tradeo�s. We present performance results that enable us to quantify

the performance of our infrastructure.

1 Introduction

Recent developments in networking are enabling the construction of high-performance dis-

tributed computing applications that span supercomputers, large-scale database systems, spe-

cialized scienti�c instruments, and other resources located at many sites [2]. These resources

may be connected by dedicated or shared high-speed networks, and programs often must achieve

a substantial fraction of peak computer and network performance. The more than 60 groups

participating in the I-WAY wide-area computing experiment [3] demonstrated the wide range

of applications that can �t this general framework, including scienti�c simulation, collaborative

engineering, and computer-enhanced instrumentation.
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Inspired by the promising results obtained in early experiments, various groups are de-

veloping more substantial high-performance distributed computing testbeds and applications.

However, their ability to use these systems for production purposes depends crucially on the

availability of appropriate security mechanisms. Owners of resources require authentication

mechanisms to protect themselves against malicious users. Users of resources may also de-

mand authentication of resources, in order to protect themselves against spoo�ng by malicious

resource providers. Users will often need to ensure that the integrity and con�dentiality of

data communicated between resources are not compromised, particularly when communication

occurs over public networks. Other forms of attack can also be of concern, such as denial of

service attacks against applications that use supercomputers to control remote devices.

The task of meeting these security requirements is complicated by the distinctive pro-

gram structures, computing environments, and performance requirements encountered in high-

performance systems. Traditional distributed systems often have a client-server structure, with

limited mutual trust between client and server. In contrast, parallel programs may comprise

hundreds or thousands of tightly coupled, fully trusting processes. Distributed systems em-

ploy remote procedure call (RPC) or TCP/IP as their primary communication mechanism. In

contrast, the applications that we consider here may communicate by using two-sided mes-

sage passing, streaming protocols, multicast, and/or single-sided get/put operations, as well as

RPC; furthermore, they are typically programmed by using message-passing libraries such as

the standard Message Passing Interface (MPI [11]) or with specialized parallel languages (e.g.,

HPF [15] or HPC++). Programs must run on parallel computers, which typically provide spe-

cialized mechanisms for process creation, communication, and so forth, and which may even

run specialized operating systems.

Historically, we �nd that security technologies are used only if they are incorporated into

common tools in a seamless and painless fashion. In the case of high-performance computing,

this suggests a need for secure versions of parallel programming tools such as MPI. These secu-

rity enhanced tools must support the diverse process creation and authentication mechanisms

encountered in high-performance systems, and must address scalability issues that arise when

dealing with hundreds or thousands of processes. In addition, the demanding performance

requirements of high-performance applications introduces a need for mechanisms that provide

programmers with �ne-grain control over what, when, and where security mechanisms are used

in programs.

We are developing a secure communications infrastructure that addresses these various

concerns. This infrastructure builds on existing components and standards whenever possible

(e.g., SSL [12], Kerberos [25], GSS-API [17]), while also extending the state of the art to provide

four new capabilities:

� A secure process creation interface that supports the wide range of process creation mecha-

nisms encountered in high-performance computing systems, and that addresses scalability

issues that arise in programs that may need to create hundreds or thousands of processes.

� Techniques for managing the use of multiple security mechanisms within a single appli-

cation, in a way that provides a uniform high-level programming model while allowing

the choice of low-level security mechanism to vary according to what is communicated,

where it is communicated, and when it is communicated.
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� Techniques for managing the transfer of secure logical communication links among pro-

cesses in large-scale distributed computations.

� Security-enhanced implementations of multiple parallel libraries (MPI, CAVEcomm, etc.)

and languages (HPF, HPC++, etc.), that enable programmers to use our secure process

creation and communication mechanisms while using familiar tools.

These new capabilities have been implemented and evaluated in the context of Nexus[9, 10],

a low-level multithreaded communication library designed to support high-performance com-

munication in heterogeneous environments. (The security-enhanced libraries and languages

referred to above are all layered on top of Nexus.) While these capabilities are not in them-

selves a complete solution to the problem of providing security in high-performance distributed

applications, we do believe that they represent useful steps towards that goal.

The rest of this paper is as follows. In Section 2, we introduce the problems that we seek to

address in our work. In Section 3, we provide an overview of our approach and review the Nexus

communication infrastructure. In Sections 5 and 6, we describe our secure communications

infrastructure, and in Section 7, we present some experiments that allow us to evaluate its

e�ectiveness. Finally, in Sections 8 and 9 we discuss related work and present our conclusions,

respectively.

2 Requirements

We are interested in applications that integrate geographically distributed computing, network,

information, and other systems to form \virtual" networked computational resources. For ex-

ample, global climate scientists often employ large coupled simulation models, constructed by

linking models of atmospheric and ocean behaviors. Such coupled models may use multiple su-

percomputers to exploit large aggregate memory or to run di�erent components more quickly

on di�erent architectures [19, 23]. High-end collaborative engineering environments connect

supercomputers, databases, and advanced display devices to provide remote access to shared

state, which may include simulated entities as well as people [4, 5]. \Smart instruments"

connect scienti�c instruments or other data sources to remote computing capabilities [16]. In

each case, computations span heterogeneous collections of resources, often located in multiple

administrative domains. They may involve hundreds or even thousands of processes. Commu-

nication costs are frequently critical to achieved performance, and programs often use complex

computation/communication structures to reduce these costs.

The development of a comprehensive solution to the problem of ensuring \security" in

such applications is clearly a complex and multi-faceted problem. In this article, we focus our

attention on two signi�cant subproblems, namely the authentication of users and resources when

creating computational entities (\processes") on local and/or remote computer systems (the

process creation problem), and the assurance of integrity and con�dentiality when exchanging

data between these processes (the communication problem).

2.1 Process Creation

We use the term process creation to refer to the mechanism by which computational resources

are integrated into computations. These resources may all be acquired before the computation

3



starts (i.e., static allocation) or may be acquired and released during the course of the compu-

tation (dynamic allocation). Computational resources of interest include both single-processor

and multiprocessor systems, and the low-level mechanisms used to initiate computation may

be quite di�erent in each case. For example, on a workstation we might use secure or unsecure

\remote shell" (rsh) mechanisms or hand-crafted process creation servers; in contrast, parallel

computers typically provide specialized mechanisms that start a user-supplied executable on

multiple processors and may require interfacing with local resource management systems such

as a partition manager or scheduler [13].

A secure process creation facility for high-performance programs must support a hetero-

geneous mix of process creation mechanisms. It should support authentication of the user

of remote resources and/or of the resources themselves. It also needs to provide for the es-

tablishment of the security contexts required for subsequent secure communication within the

program. Because a computation may comprise hundreds or thousands of processes, which

typically are mutually trusting once created, it is both impractical and unnecessary to perform

a formal authentication process between every pair of processes. Instead, we need scalable

mechanisms for process creation that allow a process to transfer to its o�spring the right to

communicate with other processes in a computation.

2.2 Communication

Once processes have been created, they need to be able to exchange data and synchronize

their execution. As noted above, the applications in which we are interested communicate by

using a variety of interaction mechanisms. Communication performance is often critical, but as

message are often small, latency can be as important as bandwidth. Collective communication

operations across multiple processes can exacerbate the impact of latency on performance. Fur-

thermore, performance and functionality requirements frequently motivate the use of multiple

low-level communication methods within a single application. For example, coupled models

often need to use machine-speci�c communication methods within computers and optimized

wide area protocols between computers [19, 23]. Collaborative environments require a mixture

of protocols providing di�erent combinations of high throughput, multicast, and high reliabil-

ity [4, 5]. Smart instrument applications may need to be able to switch among alternative

communication substrates in the event of error or high load [16]. In general, the method used

for a communication can vary according to where communication is being performed, what is

being communicated, or when communication is performed [7].

These considerations place demanding requirements on a secure communications infrastruc-

ture. It is clearly critical to be able to specify the security mechanism used for a particular

communication independently of the low-level method used to achieve that communication.

More challenging perhaps is that programmers must be able to write programs that mix se-

cure and unsecure communication. For example, let us consider a coupled climate model as a

prototypical scienti�c simulation for which security mechanisms may be required. (While this

example may appear contrived, the controversy that surrounds global change studies suggests

that security could well be a concern, if computing in an open environment.) Assume that the

model runs the ocean and atmosphere model components on two separate IBM SP2 parallel

computers, connected by an open high-speed network. The programmer writes the coupled

model so that all communication is expressed using MPI; the MPI implementation selects com-
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munication methods for each message, according to message destination [8]. Communication

between two nodes in the same SP2 takes place over a dedicated, high-speed switch using

IBM-speci�c protocols, and as this environment is tightly controlled, we might reasonably de-

cide that security measures such as encryption are not required. In contrast, communication

between two nodes in di�erent SP2s occurs over a general purpose computer network using

TCP/IP, and may well require security measures. In Section 7, we present performance results

that demonstrate the advantages of applying security mechanisms only between models.

In this example, it is su�cient to select security mechanisms according to where commu-

nication is directed: that is, according to the underlying physical communication structure.

In other situations, we believe that it is important that programmers be able to vary security

mechanisms according to the logical communication structure of a program. For example, we

may want to use di�erent security mechanisms for communications representing \control" and

\data."

3 Our Approach

We seek to address the requirements outlined in the preceding section by constructing a secure

communications infrastructure based on a portable communications library called Nexus [10].

We chose to work with Nexus for two reasons. First, it supports many of the tools that are com-

monly used for application development in parallel and distributed systems, such as the Message

Passing Interface (MPI) [11], High Performance Fortran (HPF) [15], and CAVEcomm [5] (a

specialized library for collaborative environment applications). Second, its architecture has

been designed to support the coexistence and concurrent use of di�erent process creation and

communication methods [7]. The latter feature simpli�es the integration and management of

di�erent security methods.

Figure 1 shows some of the parallel tools that have been constructed with Nexus mechanisms.

Each of these libraries or languages use Nexus facilities to create processes and to exchange

data between processes; Nexus handles automatically the various low-level issues relating to

the process creation and communication methods to be used in di�erent situations.

3.1 Nexus Structure

The Nexus communication library is structured in terms of �ve basic abstractions: nodes,

contexts, threads, communication links, and remote service requests. A computation executes

on a set of nodes and consists of a set of threads, each executing in an address space called

a context. (For the purposes of this paper, it su�ces to assume that a context is equivalent

to a process.) An individual thread executes a sequential program, which may read and write

data shared with other threads executing in the same context. Inter-context references called

communication links provide a global name space for objects, while the remote service request

(RSR) is used to initiate communication and invoke remote computation. Nexus support

for threads is relevant to this paper to the extent that threads can be an important latency

hiding device, and multithreading can have implications for how we maintain and use security

information.

In the following, we expand upon two aspects of the Nexus system: communication links

and management of multiple communication methods.
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Figure 1: The Nexus communication infrastructure

3.2 Communication Links

As illustrated in Figure 2, communication links connect data structures called startpoints and

endpoints. (Prior papers on Nexus [10] referred to communication links as global pointers;

we adopt the alternative terminology to emphasize that we are not assuming a global address

space.) A communication link is formed by binding a startpoint to an endpoint. Many start-

points can be bound to a single endpoint and there can be many startpoints and endpoints

within a process.

Nexus supports a single communication operation: the remote service request, or RSR.

An RSR is directed from a startpoint to an endpoint, causing the transfer of data from the

startpoint process to the endpoint process and the remote execution of a function speci�ed to

be an endpoint handler. An advantage of the startpoint construct in a distributed computing

environment is that the startpoint can be used to encapsulate not only information about where

a remote object is located, but also how to communicate with that remote object. This feature

has been exploited to manage the use of multiple communication methods [7].

The endpoint construct allows us to associate local state with the remote location refer-

enced by a startpoint. This state can be used to maintain security information, and hence

is valuable when implementing stream-oriented communication routines, such as encryption

based on stream ciphers. As illustrated in Figure 2, multiple versions of this local state can be

maintained, one for each startpoint in the case where multiple startpoints are associated with

a single endpoint.

A startpoint/endpoint pair represents a simplex communication channel: that is, it speci�es

a remote destination to which a communication operation can be directed by an RSR. These

channels can be created dynamically; once created, a startpoint (but not an endpoint) can be

communicated between nodes by including it in an RSR message bu�er. Hence, a startpoint can

be thought of as a capability granting rights to operate on the associated endpoint. The RSR

mechanism allows point-to-point communication, remote memory access, streaming protocols,

and multicast to be supported within a single framework.
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Figure 2: The Nexus secure communications infrastructure. The �gure shows three startpoints

(in the two processes on the left) referencing two endpoints (on the right). The boxes labeled

\a," \b," and \c" are security contexts; these are discussed below.
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3.3 Communication Method Selection

As noted earlier, high-performance applications can require the use of di�erent communication

mechanisms in di�erent situations. Nexus incorporates automatic con�guration mechanisms

that allow it to use con�guration information contained in \resource databases" to determine

which startup mechanisms, network interfaces, and communication methods to use in di�erent

situations [7]. These mechanisms allow Nexus programs to execute unchanged in di�erent

environments, with communication methods selected according to default rules, depending on

the source and destination of the message being sent. For example, automatic selection allows

Nexus RSRs to use IBM's Message Passing Library (MPL) within an IBM SP2 and TCP/IP

between computers. Manual selection is also supported, for example allowing selection of

specialized ATM protocols when appropriate. In each case, selection mechanisms are employed

whenever a startpoint is received from another process, and hence apply both during initial

process creation and subsequently as additional communication links are established.

4 Security Contexts

As we describe in the next two sections, we extend Nexus in two main ways to develop our

secure communications infrastructure. First, we de�ne a secure process creation interface, and

integrate this with Nexus process creation mechanisms. Second, we extend Nexus communica-

tion mechanisms to use and manage security information. Both extensions make extensive use

of a security context similar to that used in GSS-API [17].

The Nexus security context is a data structure used to encapsulate security information.

Security contexts are associated with communication links and always exist in pairs: one context

is stored in a startpoint and the other in the associated endpoint. Each security context

is composed of two parts: the security con�guration and the security state. The security

con�guration describes what type of security should be used for the communication link as

well as the manner in which those security measures should be applied. For example, we

might con�gure one security context so that each message is encrypted using DES/ECB, while

another security context is con�gured to encrypt with RC4 and also to perform authentication.

This design not only allows us to con�gure security characteristics on a per-link basis, but also

provides a framework in which we may exploit di�erent implementations of security algorithms

within a single application, e.g., exploiting high-performance encryption hardware [26] that

only exists on some machines.

The security state houses the values needed to enforce the security speci�ed by the con-

�guration, such as keys and initialization vectors. Some encryption algorithms change the

values of these keys and/or initialization vectors as a function of the plaintext they encrypt

and ciphertext they decrypt. Hence, security state can change over time.

5 Process Creation

Parallel programs use process creation mechanisms to initiate computation on other comput-

ers. In Nexus, process creation involves a call to a \create process" function, which invokes

machine-speci�c mechanism to create the new process and instantiates a startpoint referencing
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int start_process(char *hostname,

char *directory,

char *executable,

char **argv,

char **environment,

int authenticate_flag,

security_context_t *sec_context)

int init_process(int *argc,

char ***argv,

security_context_t *sec_context)

Figure 3: Functions used to add a new process to a Nexus computation.

an endpoint in the newly created context. Subsequent communication with that context occurs

over the new communication link. The same interface is used to create multiple contexts (for

example, when initiating computation on a parallel computer), except that the call returns a

vector of startpoints, one per new process.

Typically, process creation involves interaction with some remote service, whether this be an

rsh daemon, a scheduler on a supercomputer, or some other specialized server. Authentication

of the requester and/or the remote server may be required, and an initial security context must

be established for subsequent communication between requester and newly created process. As

noted previously, we need to deal with a wide variety of process creation and authentication

mechanisms, and must address scalability issues that arise when creating large number of

processes.

5.1 Interface

We address the need to deal with a wide variety of process creation and authentica-

tion mechanisms by de�ning a standard interface. Two of the functions in this interface

are start process and init process (Figure 3). Process creation is initiated by a call to

start process. Using the Nexus resource database, start process can determine the au-

thentication protocols that are acceptable to the speci�ed host. Based on this information,

the initiating process selects the appropriate authentication service and contacts this service

to initiate process creation. Depending on the value of the supplied authentication 
ag and

the requirements of the host being contacted, authentication may be required just for the

client, or for both the client and the server. An initial security context can be provided to the

start process call; this is encoded as a byte array, passed over a secure channel, and made

available to the newly created process by placing it in an environment variable.

Successful authentication results in the creation of a new process on the speci�ed host,

with directory, executable, arguments, and environment as speci�ed in the start process

call. The newly created process must call the init process function before performing other

computation. The call returns the process arguments (argc, argv) and populates a user-

supplied security context with the one provided by the process that called start process.
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The two functions just described allow us to create a set of processes and an initial set of

shared security contexts. The Nexus implementation then completes the negotiation process by

using these shared security contexts to establish an initial communication link (and associated

security context) from the requesting process to the created process. Note that subsequent

communication with the newly created process can occur with any communication mechanism

supported by Nexus (TCP, vendor-speci�c libraries, etc.). The interface also includes a split-

phase version of the start process function, so that multiple process creation requests can

proceed concurrently.

5.2 Implementation Examples

Implementations of the process creation interface require mechanisms for authenticating the

user and/or the process creation servers, and for establishing a secure channel for the exchange

of the initial security context. We have developed a variety of such implementations. As an

example, we consider a Secure Socket Library (SSL)-based process creation server. This acts

as an SSL server, while the process calling start process (the creating process) acts as an

SSL client. The client connects to the server using normal SSL mechanisms, thus performing

authentication and establishing a secure channel between the client and server. The client then

uses this channel to pass the various process creation arguments to the server, which creates the

new process. When the new process calls init process, it con�gures itself using the passed

command line arguments, and initializes its security context argument using the information

passed to in by the server in environment variables. This negotiation process completes with a

communication link (and associated security context) being created from the requesting process

to the created process.

As a second example, we consider what happens when we need to create many processes at

a remote location. One approach would be to make multiple start process requests to the

appropriate remote server. However, this approach has signi�cant scalability problems. Hence,

we instead use a single request to ask that multiple requests be created. The process creation

server then creates the processes independently, accumulating the startpoints as they become

available; when it is done, it returns the vector of startpoints to the requesting process. Note

that no additional authentication is required when transferring the startpoints (and associated

security contexts) from the \proxy" node to the requesting process, because we assume that

processes in a parallel program are mutually trusting. These mechanisms allow a program to

create large numbers of processes quickly, by using a hierarchical process structure.

6 Communication

As described above, Nexus allows security contexts to be associated with communication links.

This structure gives the tool developer (or application programmer) a �ne degree of control

over how security mechanisms are applied during communication. Di�erent contexts can be

associated with di�erent links; in particular, some links may not have any security context at

all. Critical to the success of this strategy is that links that do not require security do not have

to pay a performance penalty.

Figure 2 shows how startpoints and endpoints are extended with security contexts. In this

�gure, the boxes labeled \a," \b," and \c" represent security contexts. Notice that the lower
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endpoint (on the right) has two security contexts associated with it, one for each associated

startpoint. This ability to associate multiple security contexts with an endpoint is important

for several reasons. First, di�erent startpoints might communicate by using di�erent security

mechanisms; second, even if they use the same security mechanism, multiple security contexts

are required when using encryption mechanisms (e.g., DES stream ciphers) that update the

security state as a function of the previously encrypted plaintext.

Nexus mechanisms that manipulate startpoints and endpoints are extended to deal with

security contexts. Whenever a startpoint is copied or sent to another process as part of an

RSR (hence establishing a new communication link), a new pair of security contexts is created.

Depending on the type of security context being created, the copy operation may require

communication with the endpoint, requiring a round trip communication.

The application of security mechanisms when initiating or receiving an RSR is triggered by

an \escape" tag associated with a Nexus startpoint and endpoint. If this escape tag is set, a

speci�ed security transformation is applied to communicated data. At the endpoint, we must

identify the correct security context for the incoming communication. To facilitate this, we

must place a context identi�er in the message header. Exchanging the context identi�er is one

reason why copying a security context may require communication with the endpoint.

The mechanisms just described have the desirable property of introducing little unnecessary

overhead, particularly in the case when they are not used. When they are used, costs associated

with this mechanism (relative to a communication method that always performs encryption,

for example) are a test on the \escape" 
ag followed by a lookup of a small table to see what

transformation should be applied. If a startpoint is replicated, a small security context index

must be included in each RSR. Space overhead comprises the encoding of the security context.

When not in use, the only time overhead is the test on the escape 
ag; there is no space

overhead. See Section 7 for additional discussion of performance.

Nexus constructs a remote service request by a series of \put" calls (used to designate

the data to be transferred) followed by a \send" (which completes the transfer). Our current

security-enhanced Nexus copies data into a contiguous bu�er, to which a single encryption call

is applied. An alternative approach is to incorporate encryption operations in the \put" calls,

hence reducing the number of times that data is copied. We have experimented with both

approaches, and �nd that for DES/ECB the latter approach is typically 5{7 percent faster.

The di�erence would be larger for lower-cost encryption techniques.

6.1 Logical Connections

Because security mechanisms are integrated into Nexus at a low level, they need not be visible

to the programmer. That is, it is straightforward to con�gure a Nexus application (and hence

an application code using any of the various libraries or languages layered on Nexus) so that all

communications are secured using the same standard mechanism. Furthermore, this security

need not interfere with the various communication optimizations incorporated in Nexus. For

example, in a heterogeneous environment, Nexus can, as usual, use TCP/IP between paral-

lel computers and vendor-supplied communication libraries or shared memory within parallel

computers.

Nevertheless, the full power of our architecture becomes apparent when the programmer

(or tool developer) wants to implement more sophisticated communication structures. Because
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security contexts are associated with startpoints and endpoints, rather than processes, we

can maintain multiple logical connections between a pair of processes, and associate di�erent

security mechanismswith di�erent connections. This capability allows the programmer to apply

security mechanisms selectively, depending on what is being communicated, where it is being

communicated, and even on when communication is performed. For example, we may protect

the integrity of control messages at all times, but encrypt data messages only when these are

passed over open networks; or we can use specialized encryption techniques for particular types

of data [18, 1]. Note that because security context information is associated with communication

links, not communication calls, the code that actually performs communication does not need

to be aware of whether security mechanisms are being applied.

The ability to associate security contexts with logical connections is particularly useful in

multithreaded environments, where communications over di�erent logical connections can be

interleaved at the physical level. The Nexus architecture avoids the need for an additional

layer of multiplexing/demultiplexing, as would be required, for example, if all communications

between two processes had to occur within a single stream cipher-based security context.

A number of approaches can be taken to specifying the security contexts that are to be

used for speci�c communications. As noted above, Nexus mechanisms provide a degree of

automatic management. Once a startpoint/endpoint pair has been created, the startpoint

can be communicated to other processes, and any process receiving the startpoint can then

communicate securely with the original process, by using the startpoint and its associated

security mechanism. For more �ne-grain control, Nexus provides functions for setting the

security attributes of a startpoint and endpoint. Libraries layered on top of Nexus can use

other, higher-level mechanisms. For example, an MPI implementation can associate security

attributes with a communication structuring mechanism called communicators [11].

7 Experimental Results

We report on a number of experiments that we have conducted to study the performance

of our techniques. These comprise a simple microbenchmark, designed to yield insights into

the costs associated with basic communication operations, and a large-scale application study.

We emphasize that these experiments have all been performed in the context of a large-scale

working system.

All experiments are performed on the Argonne IBM SP2, which connects 128 Power 1

processors with an SP2 high-speed switch. The SP2 supports both a fast, machine-speci�c

communication library (MPL) and TCP/IP. MPL has performance characteristics typical of

high-speed parallel computer communication libraries (35 MB/sec bandwidth, small-message

latencies of around 100 �sec). TCP over the SP2 switch runs at about 8 MB/sec and incurs

small-message latencies of around 2 msec); hence, it has performance characteristics similar to

a tuned OC3 or faster ATM network in a metropolitan area network.

7.1 Microbenchmark Results

We use a microbenchmark to compare the performance of secure and unsecure versions of our

basic communication mechanisms. This Nexus program bounces a vector of �xed size back and

forth between two processors a large number of times. Each communication is achieved by an
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Figure 4: Microbenchmark results: See text for details

RSR to the remote node, with the RSR handler that executes on the remote node invoking

an RSR back on the originating node. The experiment is repeated for di�erent vector sizes.

Figures 4 and 5 show results obtained in �ve di�erent con�gurations: Nexus when using IBM's

low-level MPL communication library, with and without DES encryption (MPL Secure, MPL

Unsecure); Nexus when using TCP/IP communication, with and without DES encryption (TCP

Secure, TCP Unsecure); and Nexus when using SSL over TCP, with DES encryption enabled

(TCP/SSL Secure). Note that identical source code is used for all experiments.

The basic Nexus with DES encryption uses a DES library in electronic codebook (ECB)

mode to encrypt data bu�ers in place prior to issuing the RSR. The library used is libdes

version 3.00 written by Eric Young. The SSL tests were conducted using SSLRef 2.0 from

Netscape Communications Corporation. This software uses RSAREF version 2.0 from RSA

Laboratories to perform the public/private key operations for handshaking and key exchange,

and uses libdes version 3.00 from Eric Young to perform the bulk encryption operations on

messages. In the SSLRef 2.0 implementation, DES is used in cipher block chaining (CBC) mode,

which is a few percent slower than DES ECB. The SSLRef code was modi�ed to disable the

generation of MD5 message hashes so that it operates similarly to Nexus using DES encryption.

The results reveal a number of interesting attributes of our Nexus secure communication

infrastructure. Looking �rst at Figure 4, we note that for small messages, the underlying

communication protocol (TCP vs. MPL) makes a bigger di�erence to performance than whether

or not security is enabled. For a 10-byte message, unsecure MPL communication takes 96 �sec,
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Figure 6: The Argonne/Wisconsin coupled ocean/atmosphere model in the con�guration used

for our multimethod communication experiments, showing the two IBM SP partitions.

while secure MPL takes 154 �sec: 60 percent slower than unsecure MPL, but still a lot faster

than both secure and unsecure TCP, which take 552 and 609 �sec, respectively. These results

emphasize the importance of using optimized low-level communication mechanisms when these

are available.

For larger messages, encryption costs dominate communication time. Beyond 200 bytes,

secure MPL is slower than unsecure TCP (but still considerably faster than secure TCP).

Looking at Figure 5, we see that for messages larger than a few thousand bytes, secure MPL

and TCP have essentially the same cost. This is because the communication costs for large

messages are dominated by the limited performance of the DES encryption library, which on

the Power 1 processor encrypts data at only 0.34 Mbytes/sec, far slower than the SP2 network.

Our results also reveal insights into the e�ciency of SSLref. We see that for a 10-byte

message, Nexus when using SSLref takes 780 �sec for a communication vs. 609 �sec when

encryption mechanisms are integrated into Nexus. This 171 �sec (28 percent) overhead is due

to additional network I/O operations in the SSLref version, and extra copy operations.

7.2 Application Results

Our application study uses the Millenia coupled climate model, designed to run at relatively

low resolutions for multicentury simulations. This model uses MPI for communication and

combines a large atmosphere model (the Parallel Community Climate Model [6]) with an ocean

model (from U. Wisconsin). The two models execute concurrently and perform considerable

internal communication. Every two atmosphere steps, the models exchange information such

as sea surface temperature and various 
uxes.

To provide a controlled environment for our experiments, we run the two model components

not on two di�erent computers but instead on distinct partitions of the Argonne SP2 (Figure 6).

Communication between partitions is always performed by using TCP, hence approximating a

situation in which we have two computers connected by an ATM metropolitan area network.

Communication within a partition may be performed by using either MPL or TCP; we present

results for both cases. In all cases, user-level communication is achieved by using the MPI

implementation that we have constructed by layering on top of Nexus [8]. (This layering adds
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Table 1: Time per simulated day for the coupled ocean/atmosphere model, with di�erent

security modes and communication protocols on an IBM SP2

Mode TCP time MPL time

(secs/day) (secs/day)

No secure 854 574

Coupler secure 897 590

All secure 1459 1187

an execution time overhead of about 6 percent when compared with a \native" MPI.) No

changes to the application program were required to run the di�erent scenarios considered

below.

Table 1 gives our results. We present results for three di�erent scenarios: no encryption

(\No secure"), encryption only on communications between models (\Coupler secure"), and

encryption on all communications (\All secure"). In each case, we consider con�gurations in

which either TCP or MPL are used within a partition.

Our results demonstrate the importance of a communications infrastructure that can both

support the use of multiple low-level communication methods (MPL as well as TCP) and permit

selective application of encryption. When using encrypted TCP for all communication, total

time is 1459 seconds per simulated day. Allowing the use of MPL within a partition reduces

execution time by 19 percent, to 1187 seconds/day. Turning o� encryption within partitions

reduces execution time by a further 50 percent, to 590 seconds/day. The latter time is only 3

percent slower than when using no encryption at all.

8 Related Work

While there has been considerable earlier work on portable security mechanisms for distributed

computing, issues relating to high-performance computing have received less attention.

The Secure Socket Library [12] (SSL) allows the programmer to associate di�erent secu-

rity mechanisms with di�erent physical connections (sockets), but does not permit the use of

specialized communication methods . In contrast, Nexus allows di�erent security mechanisms

to be associated with di�erent logical connections, which furthermore can communicate with

di�erent low-level protocols.

Jaspan [14] describes the use of GSS-API to implement secure remote procedure calls. He

reports an overhead of over 11 milliseconds for a secured RPC with no arguments; clearly, this

work does not emphasize performance.

Venugopal [28] describes a secure implementation of Parallel Virtual Machine, a popular

message passing library. He uses a secure rsh for remote process creation and Di�e-Hellman

key exchange to communicate a secret session key from the initial user process to all other

processes. Encryption is enabled on a per-session basis, at the command line, although the

programmer also has the option of specifying that a speci�c message should be secured using a

particular technique. There is no support for associating a security mechanismwith a particular
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logical connection.

The Prospero Resource Manager (PRM) [22] uses Kerberos mechanisms to provide secure

process creation mechanisms for PVM. Depending on the level of security required, PRM can

be con�gured to execute (a) only those programs whose executables reside in the PRM binaries

directory (b) executables residing on the �lesystem local to the site (c) local executables as well

as those downloaded from remote sites from which jobs are submitted.

The x-kernel [24] and Horus [27] use protocol composition techniques to construct security

enhanced versions of communication methods without the specialized \escape" used in Nexus.

This approach introduces certain overheads but has high 
exibility. We hope to explore its use

in future work.

9 Conclusions

We have described the design and implementation of a secure communications infrastructure for

high-performance distributed computing applications. This infrastructure integrates authen-

tication, encryption, and data integrity mechanisms into the tools typically used to develop

high-performance applications. These security-enhanced tools make it possible to run large-

scale distributed applications in a secure manner, without any changes to the applications

themselves. In addition, the tools provide hooks that programmers can use to manage explic-

itly the security mechanisms used for di�erent communications. Experimental studies demon-

strate that in a TCP/IP environment our performance is superior to that of SSLref, while in

heterogeneous environments we can obtain signi�cant performance advantages by employing

multiple transport mechanisms and by enabling security mechanisms only when communicating

selectively.

In future work, we propose to deploy these security-enhanced communication tools in a wide-

area computing testbed that we are constructing, called GUSTO. This deployment will allow

large-scale application experiments and hence provide feedback on how our security mecha-

nisms work in practical situations. It seems certain that encryption performance will be a

bottleneck in many situations. Hence, we will experiment with various performance enhance-

ment techniques, including specialized protocols [1], parallel encryption algorithms [20, 21], and

use of dedicated encryption processors. Another interesting direction for further work will be

to investigate the feasibility of using the Nexus resource database to determine when secure

communication mechanisms must be employed, for example because communication occurs

over insecure network connections. Clearly one issue that will be important to address in this

context is the authenticity of resource database entries.
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