
SNAP: A Protocol for Negotiating Service Level

Agreements and Coordinating Resource
Management in Distributed Systems

Karl Czajkowski1, Ian Foster2,3, Carl Kesselman1,
Volker Sander4, and Steven Tuecke2

1 Information Sciences Institute
University of Southern California, Marina del Rey, CA 90292 U.S.A.

{karlcz,carl}@isi.edu
2 Mathematics and Computer Science Division

Argonne National Laboratory, Argonne, IL 60439 U.S.A.
{foster,tuecke}@mcs.anl.gov

3 Department of Computer Science
The University of Chicago, Chicago, IL 60657 U.S.A.

4 Zentralinstitut für Angewandte Mathematik
Forschungszentrum Jülich, 52425 Jülich, Germany

Abstract. A fundamental problem in distributed computing is to map
activities such as computation or data transfer onto resources that meet
requirements for performance, cost, security, or other quality of service
metrics. The creation of such mappings requires negotiation among ap-
plication and resources to discover, reserve, acquire, configure, and mon-
itor resources. Current resource management approaches tend to spe-
cialize for specific resource classes, and address coordination across re-
sources only in a limited fashion. We present a new approach that over-
comes these difficulties. We define a resource management model that dis-
tinguishes three kinds of resource-independent service level agreements
(SLAs), formalizing agreements to deliver capability, perform activities,
and bind activities to capabilities, respectively. We also define a Service
Negotiation and Acquisition Protocol (SNAP) that supports reliable man-
agement of remote SLAs. Finally, we explain how SNAP can be deployed
within the context of the Globus Toolkit.

1 Introduction

A common requirement in distributed computing systems such as Grids [17, 20]
is to negotiate access to, and manage, resources that exist within different admin-
istrative domains than the requester. Acquiring access to these remote resources
is complicated by the competing needs of the client and the resource owner. The
client needs to understand and affect resource behavior, often requiring assur-
ance or guarantee on the level and type of service being provided by the resource.
Conversely, the owner wants to maintain local control and discretion over how
the resource can be used. Not only does the owner want to control usage policy,

D.G. Feitelson et al. (Eds.): JSSPP 2002, LNCS 2537, pp. 153–183, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

154 Karl Czajkowski et al.

he often wants to restrict how much service information is exposed to clients.
A common means for reconciling these two competing demands is to negotiate
a service-level agreement (SLA), by which a resource provider “contracts” with
a client to provide some measurable capability or to perform a task. An SLA
allows clients to understand what to expect from resources without requiring
detailed knowledge of competing workloads or resource owners’ policies. This
concept holds whether the managed resources are physical equipment, data, or
logical services.

However, negotiation of SLAs for distributed Grid applications is compli-
cated by the need to coordinate access to multiple resources simultaneously.
For example, large distributed simulations [5] can require access to many large
computational resources at one time. On-line experiments [41] require that com-
putational resources be available when the experiment is being conducted, and
processing pipelines such as data-transfer [22], data-analysis [26, 3] and visual-
ization pipelines [9] require simultaneous access to a balanced resource set.

Given that each of the resources in question may be owned and operated by
a different provider, establishing a single SLA across all of the desired resources
is not possible. Our solution to this problem is to define a resource management
model in which management functions are decomposed into different types of
SLAs that can be composed incrementally, allowing for coordinated management
across the desired resource set. Specifically, we propose three different types of
SLAs:

– Task service level agreements (TSLAs) in which one negotiates for the perfor-
mance of an activity or task. A TSLA is, for example, created by submitting
a job description to a queuing system. The TSLA characterizes a task in
terms of its service steps and resource requirements.

– Resource service level agreements (RSLAs) in which one negotiates for the
right to consume a resource. An RSLA can be negotiated without specifying
for what activity the resource will be used. For example, an advance reser-
vation takes the form of an RSLA. The RSLA characterizes a resource in
terms of its abstract service capabilities.

– Binding service level agreements (BSLAs) in which one negotiates for the
application of a resource to a task. For example, an RSLA promising net-
work bandwidth might be applied to a particular TCP socket, or an RSLA
promising parallel computer nodes might be applied to a particular job task.
The BSLA associates a task, defined either by its TSLA or some other unique
identifier, with the RSLA and the resource capabilities that should be met
by exploiting the RSLA.

As illustrated in Figure 1, the above SLAs define a resource management model
in which one can submit tasks to be performed, get promises of capability, and
lazily bind the two. By combining these agreements in different ways, we can rep-
resent a variety of resource management approaches including: batch submission,
resource brokering, co-allocation and co-scheduling.

One concrete example of a lazily-established BSLA might be to increase
the number of physical memory pages bound to a running process, based on

SNAP: A Protocol for Negotiating Service Level Agreements 155

RSLA 1 RSLA 2 TSLA BSLA 1

t6

t0 t1 t2

t3

t4

t5Resource state

SLAs

Fig. 1. Three types of SLA—RSLA, TSLA, and BSLA—allow a client to sched-
ule resources as time progresses from t0 to t6. In this case, the client acquires
two resource promises (RSLAs) for future times; a complex task is submitted as
the sole TSLA, utilizing RSLA 1 to get initial portions of the job provisioned;
later, the client applies RSLA 2 to accelerate provisioning of another component
of the job; finally, the last piece of the job is provisioned by the manager without
an explicit RSLA

observed data regarding the working-set size of the service. Another example
is network QoS: a reservation regarding the path between two Internet host
addresses may guarantee a client a minimum bandwidth flow as an RSLA. The
client must bind TCP socket addresses to this reserved capability at runtime
as a BSLA—the sockets are identifiable “tasks” most likely not managed with
a TSLA. The complexity of real-world scenarios is addressed with combinations
of such SLAs. The proposed SLA model is independent of the service being
managed—the semantics of specific services are accommodated by the details
of the agreement, and not in the types of agreements negotiated. Because of its
general applicability, we refer to the protocols used to negotiate these SLAs as
the Service Negotiation and Acquisition Protocol (SNAP).

The service management approach proposed here extends techniques first
developed within the Globus Toolkit’s GRAM service [8] and then extended in
the experimental GARA system [21, 22, 36]. An implementation of this architec-
ture and protocol can leverage a variety of existing infrastructure, including the
Globus Toolkit’s Grid Security Infrastructure [19] and Monitoring and Discov-
ery Service [10]. We expect the SNAP protocol to be easily implemented within
the Open Grid Services Architecture (OGSA) [18, 39], which provides request
transport, security, discovery, and monitoring.

The remainder of this paper has the following structure: in Section 2 we
present several motivating scenarios to apply SLA models to Grid RM prob-
lems; in Section 3 we present the SNAP protocol messages and state model,
which embed a resource and task language characterized in Section 4. In Sec-
tion 5, we briefly formalize the relationship between the various SLA and resource
languages in terms of their satisfaction or solution spaces. Finally, in Sections 6
and 7, we describe how SNAP can be implemented in the context of Globus
services and relate it to other QoS and RM work.

156 Karl Czajkowski et al.

2 Motivating Scenarios

The SNAP SLA model is designed to address a broad range of applications
through the aggregation of simple SLAs. In this section we examine two com-
mon scenarios: a Grid with “community schedulers” mediating access to shared
resources on behalf of different client groups, and a file-transfer scenario where
QoS guarantees are exploited to perform data staging under deadline conditions.

2.1 Community Scheduler Scenario

A community scheduler (sometime referred to as a resource broker) is an entity
that acts as an intermediary between the community and its resources: activities
are submitted to the community scheduler rather than to the end resource, and
the activities are scheduled onto community resources in such as way as to
optimize the community’s use of its resource set.

As depicted in Figure 2, a Grid environment may contain many resources
(R1–R6), all presenting an RSLA interface as well as a TSLA interface. Op-
timizing the use of resources across the community served by the scheduler is
only possible if the scheduler has some control over the resources used by the
community. Hence the scheduler negotiates capacity guarantees via RSLAs with
a pool of underlying resources, and exploits those capabilities via TSLAs and
BSLAs. This set of agreements abstracts away the impact of other community
schedulers as well as any “non-Grid” local workloads, assuming the resource
managers enforce SLA guarantees at the resources.

Community scheduler services (S1 and S2 in Figure 2) present a TSLA in-
terface to users. Thus a community member can submit a task to the scheduler
by negotiating a TSLA, and the scheduler in turn hands this off to a resource by

���
���
���
���
���

���
���
���
���
���

R2 R3 R4 R5 R6R1

S1 S2

J1 J2 J3 J4 J5 J6 J7

T/BSLA

RSLA

���
���
���
���
���
���

���
���
���
���
���
���

Fig. 2. Community scheduler scenario. Multiple users (J1–J7) gain access to
shared resources (R1–R6). Community schedulers (S1–S2) mediate access to the
resources by making TSLAs with the users and in turn making RSLAs and
TSLAs with the individual resources

SNAP: A Protocol for Negotiating Service Level Agreements 157

binding this TSLA against one of the existing RSLAs. The scheduler may also
offer an RSLA interface. This would allow applications to co-scheduler activities
across communities, or combine community scheduled resources with additional
non-community resources.

The various SLAs offered by the community scheduler and underlying re-
sources result in a very flexible resource management environment. Users in this
environment interact with community and resource-level schedulers as appropri-
ate for their goals and privileges. A privileged client with a batch job such as
J7 in Figure 2 may not need RSLAs, nor the help of a community scheduler,
because the goals are expressed directly in the TSLA with resource R6. The
interactive job J1 needs an RSLA to better control its performance. Jobs J2 to
J6 are submitted to community schedulers S1 and S2 which might utilize special
privileges or domain-specific knowledge to efficiently implement their commu-
nity jobs. Note that not all users require RSLAs from the community scheduler,
but S1 does act as an RSLA “reseller” between J2 and resource R3. Scheduler
S1 also maintains a speculative RSLA with R1 to more rapidly serve future
high-priority job requests.

2.2 File Transfer Scenarios

In these scenarios, we consider that the activity requested by the user is to
transfer a file from one storage system to another. Generalizing the community
scheduler example, we augment the behavior of the scheduler to understand that
a transfer requires storage space on the destination resource, and network and
endpoint I/O bandwidth during the transfer. The key to providing this service
is the ability of the scheduler to manage multiple resource types and perform
co-scheduling of these resources.

File Transfer Service As depicted in Figure 3, the file transfer scheduler
S1 presents a TSLA interface, and a network resource manager R2 presents
an RSLA interface. A user submits a transfer job such as J1 to the scheduler
with a deadline. The scheduler obtains a storage reservation on the destination
resource R3 to be sure that there will be enough space for the data before at-
tempting the transfer. Once space is allocated, the scheduler obtains bandwidth
reservations from the network and the storage devices, giving the scheduler con-
fidence that the transfer can be completed within the user-specified deadline.
Finally, the scheduler submits transfer endpoint jobs J2 and J3 to implement
the transfer J1 using the space and bandwidth promises.

Job Staging with Transfer Service SLAs can be linked together to address
more complex resource co-allocation situations. We illustrate this considering
a job that consists of a sequence of three activities: data is transferred from
a storage system to an intermediate location, some computation is performed
using the data, and the result is transferred to a final destination. The computa-
tion is performed on resources allocated to a community of users. However, for

158 Karl Czajkowski et al.

R1 R3R2

J1

S1

J3J2

T/BSLA

RSLA

Fig. 3. File transfer scenario. File transfer scheduler coordinates disk and net-
work reservations before co-scheduling transfer endpoint jobs to perform transfer
jobs for clients

security reasons, the computation is not performed using a group account, but
rather, a temporary account is dynamically created for the computation (In [32],
we describe a community authorization service which can be used to authorize
activities on behalf of a user community).

In Figure 4, TSLA1 represents a temporary user account, such as might be
established by a resource for a client who is authorized through a Community
Authorization Service. All job interactions by that client on the resource become
linked to this long-lived SLA—in order for the account to be reclaimed safely,
all dependent SLAs must be destroyed. The figure illustrates how the individual
SLAs associated with the resources and tasks can be combined to address the
end-to-end resource and task management requirements of the entire job. Of
interest in this example are:

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������

������
������
������

TSLA1

RSLA1

BSLA1

TSLA2

TSLA3

S
ta

ge
 o

ut

S
ta

ge
 in

time

BSLA2

RSLA2

TSLA4

Net

30 GB for /scratch/tmpuser1/foo/* files

Complex job

50 GB in /scratch filesystem

account tmpuser1

Fig. 4. Dependent SLAs for file transfers associated with input and output of
a job with a large temporary data space. BSLA2 is dependent on TSLA4 and
RSLA2, and has a lifetime bound by those two

SNAP: A Protocol for Negotiating Service Level Agreements 159

TSLA1 is the above-mentioned temporary user account.
RSLA1 promises the client 50 GB of storage in a particular file-system on the

resource.
BSLA1 binds part of the promised storage space to a particular set of files

within the file-system.
TSLA2 runs a complex job which will spawn constituent parts for staging of

input and output data.
TSLA3 is the first file transfer task, to stage the input to the job site without

requiring any additional QoS guarantees in this case.
TSLA4 is the second file transfer task, to stage the large output from the job

site, under a deadline, before the local file-system space is lost.
RSLA2 and BSLA2 are used by the file transfer service to achieve the addi-

tional bandwidth required to complete the (large) transfer before the dead-
line.

The job scheduled by TSLA2 might have built-in logic to establish the staging
jobs TSLA3 and TSLA4, or this logic might be part of the provider performing
task TSLA2 on behalf of the client. In the figure, the nesting of SLA “boxes” is
meant to illustrate how lifetime of these management abstractions can be linked
in practice. Such linkage can be forced by a dependency between the subjects of
the SLAs, e.g. BSLA2 is meaningless beyond the lifetime of TSLA4 and RSLA2,
or optionally added as a management convenience, e.g. triggering recursive de-
struction of all SLAs from the root to hasten reclamation of application-grouped
resources.

2.3 Resource Virtualization

In the preceding scenarios, the Community Scheduler can be viewed as virtu-
alizing a set of resources from other managers for the benefit of its community
of users. This type of resource virtualization is important as it helps implement
the trust relationships that are exploited in Grid applications. The user com-
munity trusts their scheduler to form agreements providing resources (whether
basic hardware capabilities or complex service tasks), and the scheduler has its
own trust model for determining what resources are acceptable targets for the
community workload.

Another type of virtualization in dynamic service environments like the Open
Grid Service Architecture (OGSA) is captured in the factory service model [18].
A SNAP manager in such an environment produces SLAs, providing a long-lived
contact point to initiate and manage the agreements. The SLA factory exposes
the agreements as set of short-lived, stateful services which can be manipu-
lated to control one SLA. Resource virtualization is particularly interesting when
a TSLA schedules a job which can itself provide Grid services. This process is
described for “active storage” systems in [26] and [9], where data extraction jobs
convert a compute cluster with parallel storage into an application-specialized
data server. The submission of a TSLA running such jobs can be thought of as
the dynamic deployment of new services “on demand,” a critical property for
a permanent, but adaptive, global Grid [20].

160 Karl Czajkowski et al.

S3

active

S1

RSLA

TSLA

S2

BSLA

S0

agree

async

agree

setdeath

Fig. 5. Agreement state transitions. State of SLAs is affected by client requests
(solid arrows) and other internal behaviors in the manager (dashed arrows)

3 The SNAP Agreement Protocol

The core of the SNAP architecture is a client-service interaction used to negotiate
SLAs. The protocol applies equivalently when talking to authoritative, localized
resource owners or to intervening brokers.

We describe each operation in terms of unidirectional messages sent from
client to service or service to client. All of these operations follow a client-server
remote procedure-call (RPC) pattern, so we assume the underlying transport
will provide correlation of the initiating and responding messages. One way of
interpreting the following descriptions is that the client to service message corre-
sponds to the RPC, and the return messages represent the possible result values
of the call. This interpretation is consistent with how such a protocol would
be deployed in a Web Services environment, using WSDL to model the RPC
messages [7, 1].

3.1 Agreement State Transitions

Due the the dependence of BSLAs on RSLAs (and possibly on TSLAs), there
are four states through which SNAP progresses, as depicted in Figure 5:

S0: SLAs either have not been created, or have been resolved by expiration or
cancellation.

S1: Some TSLAs and RSLAs have been agreed upon, but may not be bound to
one another.

S2: The TSLA is matched with the RSLA, and this grouping represents a BSLA
to resolve the task.

S3: Resources are being utilized for the task and can still be controlled or
changed.

As indicated in Figure 5 with solid arrows, client establishment of SLAs enters
the state S1, and can also lead to state S2 by establishing BSLAs. It is possible for

SNAP: A Protocol for Negotiating Service Level Agreements 161

the manager to unilaterally create a BSLA representing its schedule for satisfying
a TSLA, and only the manager can move from a BSLA into a run-state S3 where
resources are actively supporting a task. Either client termination requests, task
completion, or faults may lead back to a prior state, including termination or
failure of SLAs in state S0.

3.2 Agreement Meta-language

The SNAP protocol maintains a set of manager-side SLAs using client-initiated
messages. All SLAs contain an SLA identifier I, the client c with whom the SLA
is made, and an expiration time tdead, as well as a specific TSLA, RSLA, or
BSLA description d:

〈I, c, tdead, d〉.
Each SLA type defines its own descriptive content, e.g. resource requirements
or task description. In this section we assume an extensible language J for de-
scribing tasks (jobs), with a subset language R⊆J capable of expressing resource
requirements in J as well as apart from any specific task description. The neces-
sary features of such a language are explored later in Section 4.

We also assume a relation a′ � a, or a′ models a, which means that a′

describes the same terms of agreement as a but might possible add additional
terms or further restrict a constraint expressed in a. In other words, any time
SLA a′ conditions are met, so are a conditions. This concept is examined more
closely in Section 5.

RSLA Content An RSLA contains the (potentially complex) resource ca-
pability description r expressed in the R subset of the J language. Therefore,
a complete RSLA in a manager has the form:

〈I, c, tdead, 〈r〉R〉.

TSLA Content A TSLA contains the (potentially complex) job description j
expressed in the J language. Therefore, a complete TSLA in a manager has the
form:

〈I, c, tdead, 〈j〉T〉.
The description j also includes a resource capability description r = j ↓R which
expresses what capability r is to be applied to the task, and using what RSLA(s).
If the named RSLAs are not sufficient to satisfy r, the TSLA implies the creation
of one or more RSLAs to satisfy j.

BSLA Content A BSLA contains the description j of an existing task in the
language J . The description j may reference a TSLA for the task, or some
other unique description in the case of tasks not initiated by a TSLA. Therefore,
a complete stand-alone RSLA in a manager has the form:

〈I, c, tdead, 〈j〉B〉.

162 Karl Czajkowski et al.

getident(t)

useident(I)

MessagesClient Manager State

request(SLA)

agree(SLA)

<I,c,t>

<I,c,t,<r> >

setdeath(I,t)

willdie(I,t)

error(descr)

<I,c,t,<j> >

<I,c,t,<j> >
R

B

T

Fig. 6. RM protocol messages. The protocol messages establish and maintain
SLAs in the manager

As for TSLAs, the BSLA description j may reference existing RSLAs and if they
do not satisfy the requirements in j, the BSLA implies the creation of one or
more RSLAs to satisfy j.

3.3 Operations

Allocate Identifier Operation There are multiple approaches to obtaining
unique identifiers suitable for naming agreements. To avoid describing a security
infrastructure-dependent approach, we suggest a special light-weight agreement
to allocate identifiers from a manager. This operation is analogous to opening
a timed transaction in a database system. The client sends:

getident(tdead),

asking the manager to allocate a new identifier that will be valid until time tdead.
On success, the manager will respond:

useident(I, tdead),

and the client can then attempt to create reliable RM agreements using this
identifier as long as the identifier is valid. A common alternative approach would
fold the identifier allocation into an initial SLA request, requiring a follow-up
acknowledgment or commit message from the client to complete the agreement.
With the above separation of identifier allocation, we avoid confusing this reliable
messaging problem with a different multi-phase negotiation process inherent in
distributed co-reservation (where the concept of “commitment” is more generally
applicable).

SNAP: A Protocol for Negotiating Service Level Agreements 163

Agreement Operation A client negotiates an SLA using a valid identifier
obtained using getident(. . .). The client issues a single message with arguments
expressed in the agreement language from Section 3.2:

request(I, c, tdead, a).

The SLA description a captures all of the requirements of the client. On success,
the manager will respond with a message of the form:

agree(I, c, tdead, a
′),

where a′ � a as described in Sections 3.2 and 5. In other words, the manager
agrees to the SLA description a′, and this SLA will terminate at tdead unless the
client performs a setdeath(I, t) operation to change its scheduled lifetime.

A client is free to re-issue requests, and a manager is required to treat dupli-
cate requests received after a successful agreement as being equivalent to a re-
quest for acknowledgment on the existing agreement. This idempotence is en-
abled by the unique identifier of each agreement.

Set Termination Operation We believe that idempotence (i.e. an at-most-
once semantics) combined with expiration is well-suited to achieving fault-
tolerant agreement. We define our operations as atomic and idempotent interac-
tions that create SLAs in the manager. Each SLA has a termination time, after
which a well-defined reclamation effect occurs. This termination effect can be ex-
ploited at runtime to implement a spectrum of negotiation strategies: a stream
of short-term expiration updates could implement a heart-beat monitoring sys-
tem [37] to force reclamation in the absence of positive signals, while a long-term
expiration date guarantees SLAs will persist long enough to survive transient
outages.

With this operation, a client can set a new termination time for the identifier
(and any agreement named as such). The client changes the lifetime by sending
a message of the form:

setdeath(I, tdead),

where tdead is the new wall-clock termination time for the existing SLA labeled
by I. On success the manager will respond with the new termination time:

willdie(I, tdead),

and the client may reissue the setdeath(. . .) message if some failure blocks
the initial response. Agreements can be abandoned with a simple request of
setdeath(I, 0) which forces expiration of the agreement.

The lifetime represented by tdead is the lifetime of the agreement named by I.
If the agreement makes promises about times in the future beyond its current
lifetime, those promises expire with the SLA. Thus, it is a client’s responsibility
to extend or renew an SLA for the full duration required.

164 Karl Czajkowski et al.

3.4 Change

Finally, we support the common idiom of atomic change by allowing a client to
resend the request on the same SLA identifier, but with modified requirement
content. The service will respond as for an initial request, or with an error if
the given change is not possible from the existing SLA state. When the response
indicates a successful SLA, the client knows that any preceding agreement named
by I has been replaced by the new one depicted in the response. When the
response indicates failure, the client knows that the state is unchanged from
before the request.

In essence, the service compares the incoming SLA request with its internal
policy state to determine whether to treat it as a create, change, or lookup.
The purpose of change semantics is to preserve state in the underlying resource
behavior where that is useful, e.g. it is often possible to preserve an I/O channel
or compute task when QoS levels are adjusted. Whether such a change is possible
may depend both on the resource type, implementation, and local policy. If the
change is refused, the client will have to initiate a new request and deal with the
loss of state through other means such as task check-pointing. An alternative to
implicit change would be an explicit change mechanism to perform structural
editing of the existing SLA content, but we do not define concrete syntax for the
R and J languages as would be needed to formalize such editing.

Change is also useful to adjust the degree of commitment in an agreement. An
expected use is to monotonically increase the level of commitment in a promise
(or cancel it) as a client converges on an application schedule involving multiple
resource managers. This use essentially implements a timed, multi-phase commit
protocol across the managers which may be in different administrative domains.
However, there is no architectural requirement for this monotonic increase—a
client may also want to decrease the level of commitment if they lose confidence
in their application plan and want to relax agreements with the manager.

4 Resource and Task Meta-language

The resource and scheduling language J assumed in Section 3 plays an important
role in our architecture. Clients in general must request resources by property,
e.g. by capability, quality, or configuration. Similarly, clients must understand
their assignments by property so that they can have any expectation of delivery
in an environment where other clients’ assignments and activities may be hidden
from view.

In this section we examine some of the structures we believe are required
in this language, without attempting to specify a concrete syntax. As a gen-
eral note, we believe that resource description must be dynamically extensible,
and the correct mechanism for extension is heavily dependent on the technol-
ogy chosen to implement SNAP. Sets of clients and resources must be able to
define new resource syntax to capture novel devices and services, so the lan-
guage should support these extensions in a structured way. However, a complex

SNAP: A Protocol for Negotiating Service Level Agreements 165

new concept may sometimes be captured by composing existing primitives, and
hopefully large communities will be able to standardize a relatively small set of
such composeable primitives.

4.1 Resource Metrics

Many resources have parameterized attributes, i.e. a metric describing a partic-
ular property of the resource such as bandwidth, latency, or space. Descriptions
may scope these metrics to a window of time [t0, t1] in which the client desires
access to a resource with the given qualities. We use a generic scalar metric and
suggest below how they can be composed to model conventional resources.

A scalar metric can exactly specify resource capacity. Often requirements
are partially constraining, i.e. they identify ranges of capacity. We extend scalar
metrics as unary inequalities to use the scalar metrics as a limit. The limit syntax
can also be applied to time values, e.g. to specify a start time of “≤ t” for a
provisioning interval that starts “on or before” the exact time t.

Time metrics t expressed in wall-clock time, e.g. “Wed Apr 24 20:52:36 UTC
2002.”

Scalar metrics xu expressed in x real-valued units u, e.g. 512 Mbytes, or 10×
10−3 s/seek.

Max limit < m and ≤ m specify an exclusive or inclusive upper limit on the
given metric m, respectively.

Min limit > m and ≥ m specify an exclusive or inclusive lower limit on the
given metric m, respectively.

These primitives are “leaf” constructs in a structural resource description. They
define a syntax, but some of their meaning is defined by the context in which
they appear.

4.2 Resource Composites

The resource description language is compositional. Realistic resources can be
modeled as composites of simpler resource primitives. Assuming a representation
of resources r1, r2 etc. we can aggregate them using various typed constructs.

Set [r1, r2, . . .] combining arbitrary resources that are all required.
Typed Set [r1, r2, . . .]type combining type-specific resources. Groups are

marked with a type to convey the meaning of the collection of resources,
e.g. [x1 bytes, x2 bytes/s]disk might collect space and bandwidth metrics for
a “file-system” resource.

Array n × r is an abbreviation for the group of n identical resource instances
[r, r, . . . , r], e.g. for convenient expression of symmetric parallelism.

The purpose of typed groups is to provide meaning to the metric values inside—
in practice the meaning would be denoted only in an external specification of

166 Karl Czajkowski et al.

the type, and the computer system interrogating instances of R will be im-
plemented to recognize and process the typed composite. For example, the
[x1 bytes, x2 bytes/s]disk composite tells us that we are constraining the speed
and size of a secondary storage device with the otherwise ambiguous metrics for
space and bandwidth.

Resources are required over periods of time, i.e. from a start time t0 to an
end time t1, and we denote this as r[t0,t1]. A complex time-varying description
can be composed of a sequence of descriptions with consecutive time intervals:

r =
[
[r1]

[t0,t1], [r2]
[t1,t2], . . . , [rn]

[tn−1,tn]
][t0,tn]

.

Each subgroup within a composite must have a lifetime wholly included within
the lifetime of the parent group.

4.3 Resource Alternatives

We define disjunctive alternatives to complement the conjunctive composites
from section 4.2.

Alternative ∨ (r1, r2, . . .) differs from a resource set in that only one element ri

must be satisfied.

As indicated in the descriptions above, limit modifiers are only applicable to
scalar metrics, while the alternative concept applies to all resource description
elements. Alternatives can be used to express alternate solution spaces for the
application requirements within distinct planning regimes, or to phrase similar
requirements using basic and specialized metrics in the event that a client could
benefit from unconventional extensions to J that may or may not be recognized
by a given manager.

4.4 Resource Configuration

The final feature present in our description language is the ability to inter-
mingle control or configuration directives within the resource statement. In an
open environment, this intermingling is merely a notational convenience to avoid
presenting two isomorphic statements—one modeling the requirements of the
structured resource and one providing control data to the resource manager for
the structured resource. Task configuration details are what are added to the
language R to define the activity language J .

Configure a := v specifies an arbitrary configuration attribute a should have
value v.

In an environment with limited trust and strict usage restrictions, some resources
may be unavailable for certain configurations due to owner policy. We therefore
suggest treating them as primitive metrics when considering the meaning of the
description for resource selection, while also considering them as control data
when considering the meaning of the description as an activity configuration.

SNAP: A Protocol for Negotiating Service Level Agreements 167

net prog

mpi

128 node

ratio

2 cpu

size

ram

size rate

disk

[128× [2× [100%]cpu,
[≥ 256× 220bytes]ram,
[≥ 1× 230bytes,
≥ 30× 220bytes/s]disk]node,

net := myrinet,
prog := /usr/bin/a.out]mpi

Fig. 7. Hypothetical resource description. A parallel computer with 128 ded-
icated dual-processor nodes, each providing at least 256 MB of memory and
1GB disk with disk performance of 30 MB/s, connected by Myrinet-enabled
MPI. A parse tree is provided to help illustrate the nested expression

4.5 RSLA Binding

To support the referencing of RSLAs, we require a way to associate an existing
RSLA with a sub-requirement in J :

RSLA Binding [r, IB]bind specifies requirement r but also says it should be
satisfied using the RSLA identified by IB.

This construct supports the explicit resource planning described in Section 3.2.

5 SLA Constraint-Satisfaction Model

In a fully-developed SLA environment, one can imagine agreements including
auditing commitments, negotiated payments or exchange of service, and reme-
diation steps in case of agreement violation. However, in this paper we focus on
a weaker form of agreement where clients more or less trust resource providers
to act in good faith, and cost models for service are not explicitly addressed
nor proscribed. Nonetheless, the entire purpose of our protocol hinges on an un-
derstanding of satisfaction of SNAP SLAs. The satisfaction of an SLA requires
a non-empty “solution set” of possible resource and task schedules which deliver
the capabilities and perform the directives encoded in the J language elements
within the SLA. A self-contradictory or unsatisfiable SLA has an empty solution
set. We denote the ideal solution set with solution operators SR (r) and SJ (j)
which apply to descriptions in R or J .

While the languageR is assumed to be a syntactic subset of J , the set of solu-
tion sets {SR (r) | r ∈ R } is a superset of the set of solution sets {SJ (j) | j ∈ J },
and given a projection of requirements j ↓R∈ R , the solution set SR (j ↓R) is
a superset of SJ (j). This inversion occurs because the additional syntactic con-
structs in J are used to express additional task constraints beyond the resource
capabilities expressible in R . We would like a relation between descriptions to
capture this relationship between solution sets for the descriptions. We say that
a refined description j′ models j, or j′ � j, if and only if SJ (j′) ⊆ SJ (j). This
concept of refinement is used to define the relationship between requested and
agreed-upon SLAs in the SLA negotiation of Section 3.3.

168 Karl Czajkowski et al.

J

TSLA

BSLA

Trace

States

Reserves

Provisioning

SR

Tasks

RSLA
SJ

R
solves

Descriptions Behavior

Fig. 8. Constraint domain. Lower items in the figure conservatively approxi-
mate higher items. The solution spaces on the right are ordered as subsets,
e.g. Provisioning⊆Reserves because provisioning constrains a resource promise
to a particular task. Solution ordering maps to the “model” relation for con-
straints, e.g. BSLA�RSLA on the left

Just as J is more expressive than R , BSLAs are more expressive than TSLAs
or RSLAs. The TSLA says that a manager will “run job j according to its self-
expressed performance goals and provisioning requirements.” The RSLA says
that a manager will “provide resource capability r when asked by the client.”
A corresponding BSLA encompasses both of these and says the manager will
“apply resource r to help satisfy requirements while performing job j.” Therefore
we extend our use of the “models” relation to SLAs. This set-ordered structure
in the SNAP concept domain is illustrated in Figure 8.

6 Implementing SNAP

The RM protocol architecture described in this article is general and follows
a minimalist design principle in that the protocol captures only the behavior
that is essential to the process of negotiation. We envision that SNAP would
not be implemented as a stand alone protocol, but in practice would be layered
on top of more primitive protocols and services providing functions such as
communication, authentication, naming, discovery, etc. For example, the Open
Grid Services Architecture [18] defines basic mechanisms for creating, naming,
and controlling the lifetime of services. In the following, we explore how SNAP
could be implemented on top of the OGSA service model.

6.1 Authentication and Authorization

Because Grid resources are both scarce and shared, a system of rules for re-
source use, or policy, is often associated with a resource to regulate its use [40].
We assume a wide-area security environment such as GSI [19] will be integrated

SNAP: A Protocol for Negotiating Service Level Agreements 169

with the OGSA to provide mutually-authenticated identity information to SNAP
managers such that they may securely implement policy decisions. Both upward
information flow and downward agreement policy flow in a complex service en-
vironment, such as depicted in Figure 9, are likely subject to policy evaluation
that distinguishes between individual clients and/or requests.

6.2 Resource Heterogeneity

The SNAP protocol agreements can be mapped onto a range of existing local re-
source managers, to deploy its beneficial capabilities without requiring wholesale
replacement of existing infrastructure. Results from GRAM testbeds have shown
the feasibility of mapping TSLAs onto a range of local job schedulers, as well
as simple time-sharing computers [16, 6, 35]. The GARA prototype has shown
how RSLAs and BSLAs can be mapped down to contemporary network QoS
systems [21, 22, 36]. Following this model, SNAP manager services represent
adaptation points between the SNAP protocol domain and local RM mecha-
nisms.

6.3 Monitoring

A fundamental function for RM systems is the ability to monitor the health
and status of individual services and requests. Existing Grid RM services such
as GRAM and GARA include native protocol features to signal asynchronous
state changes from a service to a client. In addition to these native features, some
RM state information is available from a more generalized information service,
e.g. GRAM job listings are published via the MDS in the Globus Toolkit [8, 21,
10].

We expect the OGSA to integrate asynchronous subscription/notification
features. Therefore, we have omitted this function from the RM architecture
presented here. An RM service implementation is expected to leverage this com-
mon infrastructure for its monitoring data path. We believe the agreement model
presented in Sections 1, 3.2 and 3.1 suggest the proper structure for exposing
RM service state to information clients, propagating through the upward arrows
in Figure 9. Information index services can cache and propagate this informa-
tion because life-cycle of the agreement state records is well defined in the RM
protocol semantics, and the nested request language allows detailed description
of agreement properties.

6.4 Resource and Service Discovery

SNAP relies on the ability for clients to discover RM services. We expect SNAP
services to be discovered via a combination of general discovery and registry
services such as the index capabilities of MDS-2 and OGSA, client configuration
via service registries such as UDDI, and static knowledge about the commu-
nity (Virtual Organization) under which the client is operating. The discovery

170 Karl Czajkowski et al.

user F

user E

user B

user D

user A

community users and SNAP managers

user C

C1

R2R1 R3 R4
local SNAP managers

local RM mechanismsPBS QoS ...UNIX

C4

C3C2

3,4

A,B

(SLA flow)

A−E A−E D−F D−F

community index services

D,E

D−FC−E

1−4

3,4 (info flow)1,21,2

1,2 site index services

Fig. 9. An integrated SNAP system. Discovery services provide indexed views
of resources, while SNAP managers provide distributed and aggregated resource
brokering abstractions to users

information flow is exactly as for monitoring in Figure 9, with information prop-
agating from resources upward through community indexes and into clients. In
fact, discovery is one of the purposes for a general monitoring infrastructure.

Due to the potential for virtualized resources described in Section 2.3, we con-
sider “available resources” to be a secondary capability of “available services.”
While service environments provide methods to map from abstract service names
to protocol-level service addresses, it is also critical that services be discoverable
in terms of their capabilities. The primary capability of a SNAP manager is the
set of agreements it offers, i.e. that it is willing to establish with clients.

6.5 Multi-phase Negotiation

There are dynamic capabilities that also restrict the agreement space, including
resource load and RM policy. Some load information may be published to help
guide clients with their resource selection. However, proprietary policy including
priorities and hidden SLAs may effect availability to specific classes of client.

The agreement negotiation itself is a discovery process by which the client de-
termines the willingness of the manager to serve the client. By formulating future
agreements with weak commitment and changing them to stronger agreements,
a client is able to perform a multi-phase commit process to discover more infor-
mation in an unstructured environment. Resource virtualization helps discovery
by aggregating policy knowledge into a private discovery service—a community
scheduler can form RSLAs with application service providers and then expose
this virtual resource pool through community-specific agreement offers.

SNAP: A Protocol for Negotiating Service Level Agreements 171

6.6 Standard Modeling Language

In Section 4 we present the abstract requirements of an expressive resource
language J . These requirements include unambiguous encoding of provisioning
metrics, job configuration, and composites. We also identify above the propa-
gation of resource and agreement state through monitoring and discovery data
paths as important applications of the resource language. For integration with
the OGSA, we envision this language J being defined by an XML-Schema [14]
permitting extension with new composite element types and leaf metric types.
The name-space features of XML-Schema permit unambiguous extension of the
language with new globally-defined types.

This language serves the same purpose as RSL in GRAM/GARA [8, 11, 21,
22] or Class Ads in Condor [34, 27]. With SNAP, we are proposing a more exten-
sible model for novel resource composites than RSL and a more rigorously typed
extension model than Class Ads, two features which we believe are necessary for
large-scale, inter-operable deployments.

6.7 Agreement Delegation

In the preceding protocol description, mechanisms are proposed to negotiate
agreement regarding activity implementation or. These agreements capture a del-
egation of resource or responsibility between the negotiating parties. However,
it is important to note that the delegation concept goes beyond these explicit
agreements. There are analogous implicit delegations that also occur during typ-
ical RM scenarios.

The TSLA delegates specific task-completion responsibilities to the sched-
uler that are “held” by the user. The scheduler becomes responsible for reliably
planning and enacting the requested activity, tracking the status of the request,
and perhaps notifying the user of progress or terminal conditions. The RSLA
delegates specific resource capacity to the user that are held by the manager.
Depending on the implementation of the manager, this delegation might be
mapped down into one or more hidden operational policy statements that en-
force the conditions necessary to deliver on the guarantee. For example, a CPU
reservation might prevent further reservations from being made or an internal
scheduling priority might be adjusted to “steal” resources from a best-effort pool
when necessary.

Transfers of rights and responsibilities are transitive in nature, in that an
entity can only delegate that which is delegated to the entity. It is possible to
form RSLAs out of order, but in order to exploit an RSLA, the dependent RSLAs
must be valid. Such transitive delegation is limited by availability as well as trust
between RM entities. A manager which over-commits resources will not be able
to make good on its promises if too many clients attempt to use the RSLAs at
the same time. Viewing RSLAs and TSLAs as delegation simplifies the modeling
of heavy-weight brokers or service providers, but it also requires a trust/policy
evaluation in each delegation step. A manager may restrict its delegations to
only permit certain use of the resource by a client—this client may attempt to

172 Karl Czajkowski et al.

broker the resource to other clients, but those clients will be blocked when they
try to access the resource and the manager cannot validate the delegation chain.

6.8 Many Planners

Collective resource scenarios are the key motivation for Grid RM. In our archi-
tecture, the local resource managers do not solve these collective problems. The
user, or an agent of the user, must obtain capacity delegations from each of the
relevant resource managers in a resource chain. There are a variety of broker-
ing techniques which may help in this situation, and we believe the appropriate
technique must be chosen by the user or community. The underlying Grid RM
architecture must remain open enough to support multiple concurrent brokering
strategies across resources that might be shared by multiple user communities.

7 Other Related Work

Numerous researchers have investigated approaches to QoS delivery [23] and
resource reservation for networks [12, 15, 42], CPUs [25], and other resources.

Proposals for advance reservations typically employ cooperating servers that
coordinate advance reservations along an end-to-end path [42, 15, 12, 24]. Tech-
niques have been proposed for representing advance reservations, for balancing
immediate and advance reservations [15], for advance reservation of predictive
flows [12]. However, this work has not addressed the co-reservation of resources
of different types.

The Condor high-throughput scheduler can manage network resources for
its jobs. However, it does not interact with underlying network managers to
provide service guarantees [2] so this solution is inadequate for decentralized
environments where network admission-control cannot be simulated in this way
by the job scheduler.

The concept of a bandwidth broker is due to Jacobson. The Internet 2 Qbone
initiative and the related Bandwidth Broker Working Group are developing
testbeds and requirements specifications and design approaches for bandwidth
brokering approaches intended to scale to the Internet [38]. However, advance
reservations do not form part of their design. Other groups have investigated
the use of differentiated services (e.g., [43]) but not for multiple flow types. The
co-reservation of multiple resource types has been investigated in the multime-
dia community: see, for example, [28, 31, 30]. However, these techniques are
specialized to specific resource types.

The Common Open Policy Service (COPS) protocol [4] is a simple protocol
for the exchange of policy information between a Policy Decision Point (PDP)
and its communication peer, called Policy Enforcement Point (PEP). Commu-
nication between PEP and PDP is done by using a persistent TCP connection
in the form of a stateful request/decision exchange. COPS offers a flexible and
extensible mechanism for the exchange of policy information by the use of the
client-type object in its messages. There are currently two classes of COPS client:

SNAP: A Protocol for Negotiating Service Level Agreements 173

Outsourcing provides an asynchronous model for the propagation of policy
decision requests. Messages are initiated by the PEP which is actively re-
questing decisions from its PDP.

Provisioning in COPS follows a synchronous model in which the policy prop-
agation is initiated by the PDP.

Both COPS models map easily to SNAP with the SNAP manager as a PDP
and the resource implementation as a PEP. A SNAP client can also be con-
sidered a PDP which provisions policy (SLAs) to a SNAP manager which is
then the PEP. There is no analogue to COPS outsourcing when considering the
relationship between SNAP clients and managers.

7.1 GRAM

The Globus Resource Allocation Manager (GRAM) provides job submission on
distributed compute resources. It defines APIs and protocols that allow clients to
securely instantiate job running agreements with remote schedulers [8]. In [11],
we presented a light-weight, opportunistic broker called DUROC that enabled
simultaneous co-allocation of distributed resources by layering on top of the
GRAM API. This broker was used extensively to execute large-scale parallel
simulations, illustrating the challenge of coordinating computers from differ-
ent domains and requiring out-of-band resource provisioning agreements for the
runs [5, 6]. In exploration of end-to-end resource challenges, this broker was
more recently used to acquire clustered storage nodes for real-time access to
large scientific datasets for exploratory visualization [9].

7.2 GARA

The General-purpose Architecture for Reservation and Allocation (GARA) pro-
vides advance reservations and end-to-end management for quality of service
on different types of resources, including networks, CPUs, and disks [21, 22]. It
defines APIs that allows users and applications to manipulate reservations of dif-
ferent resources in uniform ways. For networking resources, GARA implements
a specific network resource manager which can be viewed as a bandwidth broker.

In [36], we presented a bandwidth broker architecture and protocol that ad-
dresses the problem of diverse trust relationships and usage policies that can
apply in multi-domain network reservations. In this architecture, individual BBs
communicate via bilaterally authenticated channels between peered domains.
Our protocol provides the secure transport of requests from source domain to
destination domain, with each bandwidth broker on the path being able to en-
force local policies and modify the request with additional constraints. The lack
of a transitive trust relation between source- and end-domain is addressed by
a delegation model where each bandwidth broker on the path being able to
identify all upstream partners by accessing the credentials of the full delegation
chain.

174 Karl Czajkowski et al.

8 Conclusions

We have presented a new model and protocol for managing the process of negoti-
ating access to, and use of, resources in a distributed system. In contrast to other
architectures that focus on managing particular types of resources (e.g., CPUs
or networks), our Service Negotiation and Acquisition Protocol (SNAP) defines
a general framework within which reservation, acquisition, task submission, and
binding of tasks to resources can be expressed for any resource in a uniform
fashion.

We have not yet validated the SNAP model and design in an implementation.
However, we assert that these ideas have merit in and of themselves, and also
note that most have already been explored in limited form within the current
GRAM protocol and/or the GARA prototype system.

Acknowledgments

We are grateful to many colleagues for discussions on the topics discussed here,
in particular Larry Flon, Jeff Frey, Steve Graham, Bill Johnston, Miron Livny,
Jeff Nick, and Alain Roy. This work was supported in part by the Mathematical,
Information, and Computational Sciences Division subprogram of the Office of
Advanced Scientific Computing Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38; by the National Science Foundation; by the NASA
Information Power Grid program; and by IBM.

References

[1] SOAP version 1.2 part 0: Primer. W3C Working Draft 17. www.w3.org/TR/-
soap12-part0/. 160

[2] Jim Basney and Miron Livny. Managing network resources in Condor. In Proc.
9th IEEE Symp. on High Performance Distributed Computing, 2000. 172

[3] Michael Beynon, Renato Ferreira, Tahsin M. Kurc, Alan Sussman, and Joel H.
Saltz. Datacutter: Middleware for filtering very large scientific datasets on
archival storage systems. In IEEE Symposium on Mass Storage Systems, pages
119–134, 2000. 154

[4] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan, and A. Sastry. The COPS
(Common Open Policy Service) protocol. IETF RFC 2748, January 2000. 172

[5] S. Brunett, D. Davis, T. Gottschalk, P. Messina, and C. Kesselman. Implement-
ing distributed synthetic forces simulations in metacomputing environments.
In Proceedings of the Heterogeneous Computing Workshop, pages 29–42. IEEE
Computer Society Press, 1998. 154, 173

[6] Sharon Brunett, Karl Czajkowski, Steven Fitzgerald, Ian Foster, Andrew John-
son, Carl Kesselman, Jason Leigh, and Steven Tuecke. Application experiences
with the Globus toolkit. In HPDC7, pages 81–89, 1998. 169, 173

[7] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web ser-
vices description language (WSDL) 1.1. Technical report, W3C, 2001.
http://www.w3.org/TR/wsdl/. 160

SNAP: A Protocol for Negotiating Service Level Agreements 175

[8] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke. A resource management architecture for metacomputing systems. In
The 4th Workshop on Job Scheduling Strategies for Parallel Processing, pages
62–82, 1998. 155, 169, 171, 173

[9] Karl Czajkowski, Alper K. Demir, Carl Kesselman, and M. Thieb́aux. Practical
resource management for grid-based visual exploration. In Proc. 10th IEEE
Symp. on High Performance Distributed Computing. IEEE Computer Society
Press, 2001. 154, 159, 173

[10] Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. Grid infor-
mation services for distributed resource sharing. In Proc. 10th IEEE Symp. on
High Performance Distributed Computing. IEEE Computer Society Press, 2001.
155, 169

[11] Karl Czajkowski, Ian Foster, and Carl Kesselman. Co-allocation services for
computational grids. In Proc. 8th IEEE Symp. on High Performance Distributed
Computing. IEEE Computer Society Press, 1999. 171, 173

[12] M. Degermark, T. Kohler, S. Pink, and O. Schelen. Advance reservations for
predictive service in the internet. ACM/Springer Verlag Journal on Multimedia
Systems, 5(3), 1997. 172

[13] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys,
J. Siméon, and P. Wadler, editors. XQuery 1.0 Formal Semantics. W3C, March
2002. http://www.w3.org/TR/2002/WD-query-semantics-20020326/. 177

[14] D.C. Fallside. XML schema part 0: Primer. Technical report, W3C, 2001.
http://www.w3.org/TR/xmlschema-0/. 171

[15] D. Ferrari, A. Gupta, and G. Ventre. Distributed advance reservation of real-
time connections. ACM/Springer Verlag Journal on Multimedia Systems, 5(3),
1997. 172

[16] I. Foster and C. Kesselman. The Globus project: A status report. In Proceedings
of the Heterogeneous Computing Workshop, pages 4–18. IEEE Computer Society
Press, 1998. 169

[17] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a Future Computing
Infrastructure. Morgan Kaufmann Publishers, 1999. 153, 175

[18] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid: An
open grid services architecture for distributed systems integration. Technical
report, Globus Project, 2002. www.globus.org/research/papers/ogsa.pdf. 155,
159, 168

[19] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational grids. In ACM Conference on Computers and Security, pages
83–91. ACM Press, 1998. 155, 168

[20] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling
scalable virtual organizations. Intl. Journal of High Performance Computing
Applications, 15(3):200–222, 2001. http://www.globus.org/research/papers/-
anatomy.pdf. 153, 159

[21] I. Foster, A. Roy, and V. Sander. A Quality of Service Architecture that Com-
bines Resource Reservation and Application Adaptation. In International Work-
shop on Quality of Service, 2000. 155, 169, 171, 173

[22] I. Foster, A. Roy, V. Sander, and L. Winkler. End-to-End Quality of Service
for High-End Applications. Technical report, Argonne National Laboratory,
Argonne, 1999. http://www.mcs.anl.gov/qos/qos papers.htm. 154, 155, 169,
171, 173

[23] Roch Guérin and Henning Schulzrinne. Network quality of service. In [17],
pages 479–503. 172

176 Karl Czajkowski et al.

[24] A. Hafid, G. Bochmann, and R. Dssouli. A quality of service negotiation ap-
proach with future reservations (nafur): A detailed study. Computer Networks
and ISDN Systems, 30(8), 1998. 172

[25] Hao hua Chu and Klara Nahrstedt. CPU service classes for multimedia appli-
cations. In Proceedings of IEEE International Conference on Multimedia Com-
puting and Systems, pages 296–301. IEEE Computer Society Press, June 1999.
Florence, Italy. 172

[26] Tahsin Kurc, Ümit Çatalyürek, Chialin Chang, Alan Sussman, and Joel Salz.
Exploration and visualization of very large datasets with the Active Data Repos-
itory. Technical Report CS-TR-4208, University of Maryland, 2001. 154, 159

[27] M. Livny. Matchmaking: Distributed resource management for high throughput
computing. In Proc. 7th IEEE Symp. on High Performance Distributed Com-
puting, 1998. 171

[28] A. Mehra, A. Indiresan, and K. Shin. Structuring communication software for
quality-of-service guarantees. In Proc. of 17th Real-Time Systems Symposium,
December 1996. 172

[29] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML (Revised). MIT Press, 1997. 177

[30] K. Nahrstedt, H. Chu, and S. Narayan. QoS-aware resource management for
distributed multimedia applications. Journal on High-Speed Networking, IOS
Press, December 1998. 172

[31] K. Nahrstedt and J.M. Smith. Design, implementation and experiences of the
OMEGA end-point architecture. IEEE JSAC, Special Issue on Distributed Mul-
timedia Systems and Technology, 14(7):1263–1279, September 1996. 172

[32] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community
authorization service for group collaboration. In The IEEE 3rd International
Workshop on Policies for Distributed Systems and Networks, June 2002. 158

[33] Gordon Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University, 1981.
177

[34] Rajesh Raman, Miron Livny, and Marvin Solomon. Resource management
through multilateral matchmaking. In Proc. 9th IEEE Symp. on High Per-
formance Distributed Computing, 2000. 171

[35] L. Rodrigues, K. Guo, P. Verissimo, and K. Birman. A dynamic light-weight
group service. Journal on Parallel and Distributed Computing, (60):1449–1479,
2000. 169

[36] V. Sander, W.A. Adamson, I. Foster, and A. Roy. End-to-End Provision of
Policy Information for Network QoS. In Proc. 10th IEEE Symp. on High Per-
formance Distributed Computing, 2001. 155, 169, 173

[37] P. Stelling, I. Foster, C. Kesselman, C. Lee, and G. von Laszewski. A fault
detection service for wide area distributed computations. In Proc. 7th IEEE
Symp. on High Performance Distributed Computing, pages 268–278, 1998. 163

[38] B. Teitelbaum, S. Hares, L. Dunn, V. Narayan, R. Neilson, and F. Reichmeyer.
Internet2 QBone - Building a testbed for differentiated services. IEEE Network,
13(5), 1999. 172

[39] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman. Grid
services specification. Technical report, Globus Project, 2002. www.globus.org/-
research/papers/gsspec.pdf. 155

SNAP: A Protocol for Negotiating Service Level Agreements 177

[40] J. Vollbrecht, P. Calhoun, S. Farrell, L. Gommans, G. Gross, B. de Bruijn,
C. de Laat, M. Holdrege, and D. Spence. AAA authorization application exam-
ples. Internet RFC 2905, August 2000. 168

[41] Gregor von Laszewski, Ian Foster, Joseph A. Insley, John Bresnahan, Carl
Kesselman, Mei Su, Marcus Thiebaux, Mark L. Rivers, Ian McNulty, Brian
Tieman, and Steve Wang. Real-time analysis, visualization, and steering of
microtomography experiments at photon sources. In Proceedings of the Ninth
SIAM Conference on Parallel Processing for Scientific Computing. SIAM, 1999.
154

[42] L.C. Wolf and R. Steinmetz. Concepts for reservation in advance. Kluwer
Journal on Multimedia Tools and Applications, 4(3), May 1997. 172

[43] Ikjun Yeom and A.L. Narasimha Reddy. Modeling TCP behavior in
a differentiated-services network. Technical report, TAMU ECE, 1999. 172

A SNAP Operational Semantics

Below, we provide a formal specification of the behavior of SNAP managers in
response to agreement protocol messages. This might be useful to validate the
behavior of an implementation, or to derive a model of the client’s belief in the
state of a negotiation. We use a variant of structural operational semantics (SOS)
which is commonly used to illustrate the transformational behavior of a complex
system [33, 29, 13]. We define our own system configuration model to retain as
intuitive a view of protocol messaging as possible.

Our SOS may appear limited in that it only models the establishment of
explicit SLAs without capturing the implicitly-created SLAs mentioned in Sec-
tion 3.3. We think these implicit SLAs should not be part of a standard, interop-
erable SNAP protocol model, though a particular implementation might expose
them. There are four main parts to our SOS:

1. Agreement language. An important component of the semantics captures
the syntax of a single agreement, embedding the resource language from
Section 4.

2. Configuration language. The state of a negotiation that is evolving due to
manager state and messages between clients and manager.

3. Service functions. A set of function declarations that abstract complex de-
cision points in the SNAP model. These functions are characterized but not
exactly defined, since they are meant to isolate the formal model from im-
plementation details.

4. Transition rules. Inference rules showing how the configuration of a negotia-
tion evolves under the influence of the service predicates and the passage of
time.

This SOS is not sufficient to understand SNAP behavior and SLA meaning until
a concrete language is specified to support the R⊆J languages proposed above.

178 Karl Czajkowski et al.

A.1 Agreement Language

An agreement a appears in the SLA language A, a generic 4-tuple as introduced
in Section 3.2:

d ∈ D = 〈R 〉R + 〈J 〉T + 〈J 〉B + ε

a ∈ A = I×N× T×D

The domain D of SLA descriptions is a union of the individual descriptive
languages described in Section 4. Because these descriptions share the same
R⊂J language, we wrap them with type designation to distinguish the con-
tent of RSLA, TSLA, and BSLA descriptions. An SLA containing the special
ε-description represents an identifier which is allocated but not yet associated
with SLA terms. Additional terminal domains I, N, and T are assumed for iden-
tifiers, client names, and time values, respectively.

A.2 Configuration Model

Abstractly, a configuration of negotiation between clients and a manager is a tu-
ple of an input message queue Q, the agreement state A of the manager, an
output message set X , and the manager’s clock t:

〈Q, A, X, t〉
The syntax of the configuration is specified as follows using a mixture of BNF
grammar and domain-constructors:

q ∈ Min := getident(c, t)
| setdeath(I, c, t)
| request(I, c, t, d)
| clock(t)

Mout := useident(I, c, t)
| willdie(I, c, t)
| agree(I, c, t, d)
| error()

〈Q, A, X, t〉 ∈ M∗
in × P(A)× P(Mout)× T

For the benefit of the following SOS rules, we include client identifiers in the
message signatures which were omitted from the messages when presented in
Section 3.

A.3 Service Functions

This formulation depends on a number of abstractions to isolate the implemen-
tation or policy-specific behavior of a SNAP manager. The following support
functions are described in terms of their minimal behavioral constraints, with-
out suggesting a particular implementation strategy.

SNAP: A Protocol for Negotiating Service Level Agreements 179

Set Manipulation We use polymorphic set operators + and − to add and
remove distinct elements from a set, respectively:

+ : P(τ)× τ → P(τ)
= λS, v .S ∪ {v}

− : P(τ)× τ → P(τ)
= λS, v .{x |x ∈ S ∧ x �= v}

Requirements Satisfaction As discussed in Sections 3.2 and 5, we assume
a relation� between descriptions indicating how their solution spaces are related:

� : R× R → Bool
� : J× J → Bool

Basic Services

Function authz maps a client name to a truth value, yielding true if and only if
the client is authorized to participate in SNAP negotiations:

authz : N → Bool

Function newident provides a new identifier that is distinct from all identifiers
in the input agreement set:

newident : A → I
= λA . i | 〈i, . . .〉 �∈ A

Initial Agreement The “reserve,” “schedule,” and “bind” functions choose
a new SLA to satisfy the client’s request, or ⊥ (bottom) if the manager will not
satisfy the request.

Function reserve chooses a new RSLA:

reserve : A× I×N× T× R → A

= λA, I, c, t, r .

{ 〈I, c, t, 〈r′〉R〉 | r′ � r
⊥

Function schedule chooses a new TSLA:

schedule : A× I×N× T× J → A

= λA, I, c, t, j .

{ 〈I, c, t, 〈j′〉T〉 | j′ � j
⊥

180 Karl Czajkowski et al.

Function bind chooses a new BSLA:

bind : A× I×N× T× J → A

= λA, I, c, t, j .

{ 〈I, c, t, 〈j′〉B〉 | j′ � j
⊥

Change Agreement The “rereserve,” “reschedule,” and “rebind” functions
choose a replacement SLA to satisfy the client’s request as discussed in Sec-
tion 3.4, or ⊥ if the manager will not satisfy the request.

Function rereserve chooses a replacement RSLA:

rereserve : A× I×N× T× R → A

= λA, I, c, t, r .

{ 〈I, c, t, 〈r′〉R〉 | r′ � r
⊥

Function reschedule chooses a replacement TSLA:

reschedule : A× I×N× T× J → A

= λA, I, c, t, j .

{ 〈I, c, t, 〈j′〉T〉 | j′ � j
⊥

Function rebind chooses a replacement BSLA:

rebind : A× I×N× T× J → A

= λA, I, c, t, j .

{ 〈I, c, t, 〈j′〉B〉 | j′ � j
⊥

A.4 Transition Rules

The following transitions rules serve to describe how a SNAP configuration of
manager SLA set and message environment evolves during and after negotiation.
Input messages are processed according to these rules to change the SLA set of
the manager and to issue response messages. Each transition is structured as
an inference rule with a number of antecedent clauses followed by a consequent
rewrite of the SNAP configuration:

antecedent1
. . .
〈q.Q, A, X, t〉 ⇒ 〈Q, A′, X ′, t′〉

The first matching rule is used to rewrite the configuration.

SNAP: A Protocol for Negotiating Service Level Agreements 181

Lifetime Management

New identifiers are allocated as needed:

authz(c)
t0 < t1
I = newident(A)
a = 〈I, c, t1, ε〉
〈getident(c, t1).Q, A, X, t0〉 ⇒ 〈Q, A + a, X + useident(I, c, t1), t0〉

Timeout changes affect existing agreements:

a1 = 〈I, c, t1, . . .〉 ∈ A
a2 = 〈I, c, t2, . . .〉
A′ = A − a1 + a2

〈setdeath(I, c, t2).Q, A, X, t0〉 ⇒ 〈Q, A′, X +willdie(I, c, t2), t0〉

Clock advances trigger removal of stale agreements:

t0 < t1
A′ = {〈I, c, t, . . .〉 | 〈I, c, t, . . .〉 ∈ A ∧ t > t1}
〈clock(t1).Q, A, X, t0〉 ⇒ 〈Q, A′, X, t1〉

The clock message is not originated by clients, but rather synthesized within the
implementation. It is formalized as a message to capture the isochronous tran-
sition semantics of the manager state with regard to messages and the passing
time.

Initial Agreement A new agreement is considered when a client requests an
agreement on a stub identifier agreement.

New RSLA

t0 < t2
a1 = 〈I, c, t1, ε〉 ∈ A
a2 = 〈I, c, t2, 〈r′〉R〉 = reserve(A, I, c, t2, r)
r′ � r
A′ = A − a1 + a2

〈reqest(I, c, t2, 〈r〉R).Q, A, X, t0〉 ⇒ 〈Q, A′, X + agree(I, c, t2, 〈r′〉R), t0〉
New TSLA

t0 < t2
a1 = 〈I, c, t1, ε〉 ∈ A
a2 = 〈I, c, t2, 〈j′〉T〉 = schedule(A, I, c, t2, j)
j′ � j
A′ = A − a1 + a2

〈reqest(I, c, t2, 〈j〉T).Q, A, X, t0〉 ⇒ 〈Q, A′, X + agree(I, c, t2, 〈j′〉T), t0〉

182 Karl Czajkowski et al.

New BSLA

t0 < t2
a1 = 〈I, c, t1, ε〉 ∈ A
a2 = 〈I, c, t2, 〈j′〉B〉 = bind(A, I, c, t2, j)
j′ � j
A′ = A − a1 + a2

〈reqest(I, c, t2, 〈j〉B).Q, A, X, t0〉 ⇒ 〈Q, A′, X + agree(I, c, t2, 〈j′〉B), t0〉

Repeat Agreement If a client requests an agreement on an existing agree-
ment, and the existing agreement already satisfies the request, then a repeat
acknowledgment is sent and the termination time of the existing agreement is
adjusted to the current request.

Repeat RSLA

t0 < t2
a1 = 〈I, c, t1, 〈r′〉R〉 ∈ A
a2 = 〈I, c, t2, 〈r′〉R〉
r′ � r
A′ = A − a1 + a2

〈reqest(I, c, t2, 〈r〉R).Q, A, X, t0〉 ⇒ 〈Q, A′, X + agree(I, c, t2, 〈r′〉R), t0〉

Repeat TSLA

t0 < t2
a1 = 〈I, c, t1, 〈j′〉T〉 ∈ A
a2 = 〈I, c, t2, 〈j′〉T〉
j′ � j
A′ = A − a1 + a2

〈reqest(I, c, t2, 〈j〉T).Q, A, X, t0〉 ⇒ 〈Q, A′, X + agree(I, c, t2, 〈j′〉T), t0〉

Repeat BSLA

t0 < t2
a1 = 〈I, c, t1, 〈j′〉B〉 ∈ A
a2 = 〈I, c, t2, 〈j′〉B〉
j′ � j
A′ = A − a1 + a2

〈reqest(I, c, t2, 〈j〉B).Q, A, X, t0〉 ⇒ 〈Q, A′, X + agree(I, c, t2, 〈j′〉B), t0〉

Change Agreement If a client requests an agreement on an existing agreement
of the same type, but the existing agreement does not satisfy the request, an
SLA change is considered.

SNAP: A Protocol for Negotiating Service Level Agreements 183

Change RSLA

t0 < t2
a1 = 〈I, c, t1, 〈r′〉R〉 ∈ A
a2 = 〈I, c, t2, 〈r′〉R〉 = rereserve(A, I, c, t2, r)
r′ � r
A′ = A − a1 + a2

〈reqest(I, c, t2, 〈r〉R).Q, A, X, t0〉 ⇒ 〈Q, A′, X + agree(I, c, t2, 〈r′〉R), t0〉

Change TSLA

t0 < t2
a1 = 〈I, c, t1, 〈j′〉T〉 ∈ A
a2 = 〈I, c, t2, 〈j′〉T〉 = reschedule(A, I, c, t2, j)
j′ � j
A′ = A − a1 + a2

〈reqest(I, c, t2, 〈j〉T).Q, A, X, t0〉 ⇒ 〈Q, A′, X + agree(I, c, t2, 〈j′〉T), t0〉

Change BSLA

t0 < t2
a1 = 〈I, c, t1, 〈j′〉B〉 ∈ A
a2 = 〈I, c, t2, 〈j′〉B〉 = rebind(A, I, c, t2, j)
j′ � j
A′ = A − a1 + a2

〈reqest(I, c, t2, 〈j〉B).Q, A, X, t0〉 ⇒ 〈Q, A′, X + agree(I, c, t2, 〈j′〉B), t0〉

Error Clause If none of the above inference rules match, this one signals an
error to the client. A quality implementation would provide more elaborate error
signaling content.

〈q.Q, A, X, t〉 ⇒ 〈Q, A, X + error(), t〉

	SNAP: A Protocol for Negotiating Service Level Agreements and Coordinating Resource Management in Distributed Systems
	Introduction
	Motivating Scenarios
	Community Scheduler Scenario
	File Transfer Scenarios
	Resource Virtualization

	The SNAP Agreement Protocol
	Agreement State Transitions
	Agreement Meta-language
	Operations
	Change

	Resource and Task Meta-language
	Resource Metrics
	Resource Composites
	Resource Alternatives
	Resource Configuration
	RSLA Binding

	SLA Constraint-Satisfaction Model
	Implementing SNAP
	Authentication and Authorization
	Resource Heterogeneity
	Monitoring
	Resource and Service Discovery
	Multi-phase Negotiation
	Standard Modeling Language
	Agreement Delegation
	Many Planners

	Other Related Work
	GRAM
	GARA

	Conclusions
	SNAP Operational Semantics
	Agreement Language
	Configuration Model
	Service Functions
	Transition Rules

