
Modeling Stateful Resources with Web Services 1

Modeling Stateful Resources with Web Services

Version 1.1

03/05/2004

Authors

Ian Foster (Globus Alliance / Argonne National Laboratory) (Editor)

Jeffrey Frey (IBM) (Editor)

Steve Graham (IBM) (Editor)

Steve Tuecke (Globus Alliance / Argonne National Laboratory) (Editor)

Karl Czajkowski (Globus Alliance / USC ISI)

Don Ferguson (IBM)

Frank Leymann (IBM)

Martin Nally (IBM)

Igor Sedukhin (Computer Associates International)

David Snelling (Fujitsu Laboratories of Europe)

Tony Storey (IBM)

William Vambenepe (Hewlett-Packard)

Sanjiva Weerawarana (IBM)

Copyright Notice

© Copyright Computer Associates International, Inc., Fujitsu Limited, Hewlett-
Packard Development Company, International Business Machines Corporation and
The University of Chicago 2003, 2004. All Rights Reserved.

Permission to copy and display this “Modeling Stateful Resources with Web Services”
whitepaper (“this Whitepaper"), in any medium without fee or royalty is hereby
granted, provided that you include the following on ALL copies of this Whitepaper, or
portions thereof that you make:

1. A link or URL to this Whitepaper at this location.

2. This Copyright Notice as shown in this Whitepaper.

THIS WHITEPAPER IS PROVIDED "AS IS," AND COMPUTER ASSOCIATES
INTERNATIONAL, FUJITSU LIMITED, IBM, THE HEWLETT-PACKARD DEVELOPMENT
COMPANY AND THE UNIVERSITY OF CHICAGO (COLLECTIVELY, THE “COMPANIES”)
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT OR TITLE; THAT THE CONTENTS OF
THIS WHITEPAPER ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE

Modeling Stateful Resources with Web Services 2

IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COMPANIES WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY
USE OR DISTRIBUTION OF THIS WHITEPAPER.

The names and trademarks of the Companies may NOT be used in any manner,
including advertising or publicity pertaining to this Whitepaper or its contents,
without specific, written prior permission. Title to copyright in this Whitepaper will at
all times remain with the Companies.

No other rights are granted by implication, estoppel or otherwise.

PORTIONS OF THIS MATERIAL WERE PREPARED AS AN ACCOUNT OF WORK
SPONSORED BY IBM CORPORATION AT UNIVERSITY OF CHICAGO'S ARGONNE
NATIONAL LABORATORY. NEITHER THE AUTHORS, NOR THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, NOR THE UNIVERSITY OF CHICAGO, NOR
IBM, NOR ANY OF THEIR EMPLOYEES OR OFFICERS, NOR ANY OTHER COPYRIGHT
HOLDERS OR CONTRIBUTORS, MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR
ASSUMES ANY LEGAL LIABILITY OR RESPONSIBILITY FOR THE ACCURACY,
COMPLETENESS, OR USEFULNESS OF ANY INFORMATION, APPARATUS, PRODUCT,
OR PROCESS DISCLOSED, OR REPRESENTS THAT ITS USE WOULD NOT INFRINGE
PRIVATELY OWNED RIGHTS. REFERENCE HEREIN TO ANY SPECIFIC COMMERCIAL
PRODUCT, PROCESS, OR SERVICE BY TRADE NAME, TRADEMARK, MANUFACTURER,
OR OTHERWISE, DOES NOT NECESSARILY CONSTITUTE OR IMPLY ITS
ENDORSEMENT, RECOMMENDATION, OR FAVORING BY IBM, THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF OR ANY OTHER COPYRIGHT HOLDERS OR
CONTRIBUTORS. THE VIEW AND OPINIONS OF AUTHORS EXPRESSED HEREIN DO
NOT NECESSARILY STATE OR REFLECT THOSE OF IBM, THE UNITED STATES
GOVERNMENT OR ANY AGENCY THEREOF, OR THE ENTITY BY WHICH AN AUTHOR
MAY BE EMPLOYED.

This manuscript has been created in part by the University of Chicago as Operator of
Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with
the U.S. Department of Energy. The U.S. Government retains for itself, and others
acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, distribute copies to the public, and
perform publicly and display publicly, by or on behalf of the Government.

Abstract
The Web services architecture has been broadly accepted as a means of structuring
interactions among distributed software services. Further standardization is now
required to facilitate additional interoperability among services. One important area
in which further standardization is required concerns interactions with stateful
resources. In this paper, we address the constructs used to enable Web services to
access state in a consistent and interoperable manner. We introduce the WS-

Modeling Stateful Resources with Web Services 3

Resource approach to declaring and implementing the association between a Web
service and one or more named typed state components. In this approach, we model
state as stateful resources and codify the relationship between Web services and
stateful resources in terms of the implied resource pattern, a set of conventions on
Web services technologies, in particular WS-Addressing. We describe a WS-Resource
in terms of a stateful resource and its associated Web service. We also describe an
approach for making the properties of a WS-Resource accessible through its Web
service interface, and for managing a WS-Resource’s lifetime.

Status
This whitepaper is an initial draft release and is provided for review and evaluation
only. The Companies hope to solicit your contributions and suggestions in the near
future. The Companies make no warranties or representations regarding the
whitepaper in any manner whatsoever.

Modeling Stateful Resources with Web Services 4

Table of Contents
1 Introduction... 5
2 Web Services Background.. 6

2.1 What is a Web Service?.. 6
2.2 Web Service Environments ... 7
2.3 A Brief Taxonomy of State and Services ... 8
2.4 Stateless Implementations, Stateful Interfaces.. 9

3 Modeling State in Web Services .. 9
3.1 Modeling State: Stateful Resources...10
3.2 The Implied Resource Pattern ..11
3.3 WS-Resource and WS-Addressing...12
3.4 WS-Resource Relationship Cardinality ...14
3.5 WS-Resource Encapsulation...15

4 WS-Resource Lifecycle ...15
4.1 WS-Resource Creation ..16
4.2 WS-Resource Identity ...16
4.3 WS-Resource Destruction ..17

5 WS-Resource Properties ...18
5.1 WS-Resource Properties Document...18
5.2 WS-Resource Property Composition ..20
5.3 Accessing WS-Resource Property Values..20

6 WS-Resource and ACID Properties ...21
7 WS-Resource Security ..22
8 Conclusions ..22
9 Acknowledgements ..22
10 References...23

Modeling Stateful Resources with Web Services 5

1 Introduction
The Web services architecture [WS-ARCH] defines a service-oriented distributed
computing model in which services interact by exchanging XML documents. The basic
elements of the Web services architecture define the syntax for information
exchange. Various efforts are now underway to augment this base architecture with
additional conventions so that interacting services can accomplish more sophisticated
behaviors such as authentication, transactions, and reliable messaging [Web
Services] in standard ways.

We introduce here a set of conventions intended to formalize interactions with state.
The motivation for these new conventions lies in the realization that there are many
ways of representing state in Web services, but there does not exist an agreed upon
convention that would promote interoperability among Web services and their
interactions with stateful resources. Even those Web service implementations
commonly described as stateless frequently allow for the manipulation of state, i.e.,
data values that persist across, and evolve because of, Web service interactions. For
example, an online airline reservation system must maintain state concerning flight
status, reservations made by specific customers, and the system itself: its current
location, load, and performance. Web service interfaces that allow requestors to
query flight status, make reservations, change reservation status, and manage the
reservation system must necessarily provide access to this state.

In what we term the WS-Resource approach, we model state as stateful resources
and codify the relationship between Web services and stateful resources in terms of
the implied resource pattern, a set of conventions on Web services technologies,
particularly XML, WSDL, and WS-Addressing [WS-Addressing]. We describe a WS-
Resource in terms of a stateful resource and an associated Web service. We also
describe an approach for making the properties of a WS-Resource accessible through
its Web service interface, and for managing and reasoning about a WS-Resource’s
lifetime.

This paper contributes to an ongoing debate within the Web services community
concerning whether and how Web services should allow for the representation of
state. In this debate, one view is that “Web services … have no notion of state”
[Vogels] and “Interactions with Web Services are stateless; contextualisation is one
proposed as a way of modeling stateful interactions” [Parastatidis], while others,
including ourselves, have argued that the critical role that state plays in distributed
computing requires that it be addressed within the Web services architecture
[Physiology]. The WS-Resource construct may help reconcile these two positions, by
showing how the relationship between Web services and state can be formalized in a
straightforward manner that builds on other Web services specifications.

We are concerned in this paper with the concepts and constructs that underlie the
WS-Resource approach, not its rendering in terms of specific Web services message
exchanges. We propose elsewhere a specific rendering, in the form of a set of
specifications called the WS-Resource Framework [WSRF].

The WS-Resource approach is inspired by the work of the Global Grid Forum’s Open
Grid Services Infrastructure (OGSI) Working Group [Physiology, OGSI-Spec]. We
discuss the relationship between the WS-Resource approach and framework and
OGSI elsewhere [OGSI-Refactor].

Modeling Stateful Resources with Web Services 6

2 Web Services Background
Before we can define the means by which Web services may be associated with
stateful resources, we need to clarify a few terms and concepts.

2.1 What is a Web Service?
The term Web services emerged in the year 2000 with the introduction of
technologies such as SOAP, WSDL, and UDDI. Contemporaneously, the term service
oriented architecture (SOA) [Tao] was coined to describe the overall approach of
building loosely coupled distributed systems with minimal shared understanding
among system components. Much writing and some practice has since increased
understanding of these concepts by the community of information technology
practitioners.

Whereas the individual component technologies, such as SOAP, WSDL and UDDI are
fairly well defined, a universally accepted definition of the term Web service remains
elusive. The W3C Web services Architecture working group provides the following
definition [WS-Arch]:

A Web service is a software system designed to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards.

A service-oriented architecture defines a distributed system wherein agents, known
as services, coordinate by sending messages. Quoting [WS-Arch] once again:

An SOA is a specific type of distributed system in which the agents are
"services." [A] service is a software agent that performs some well-defined
operation (i.e., "provides a service") and can be invoked outside of the context
of a larger application. That is, while a service might be implemented by
exposing a feature of a larger application … the users of that server need be
concerned only with the interface description of the service. "[S]ervices" have a
network-addressable interface and communicate via standard protocols and
data formats.

It is tempting to interpret the clause “users of that server need be concerned only
with the interface description of the service” as implying that a service’s behavior is
defined solely by the message exchanges supported by the service. But service
interface definitions often imply the existence of a stateful resources that are used
and manipulated in the processing of a Web service request message. For example,
the airline reservation system might support three messages, as follows.

o getReservation, which returns an XML document describing the reservation.

o addFlightSegment, which adds a new flight to the reservation.

o removeFlightSegment, which removes a segment from the trip.

This interface implies that the service manages a set of documents describing
reservations. Programmers may also infer a reservation identifier from the messages
declared in the service’s interface. The central tenet of this paper is that it is

Modeling Stateful Resources with Web Services 7

desirable to represent such relationships between a Web service and state explicitly
and in a standard manner, instead of relying on intuitive inferences. We argue that
such explicit representation and standardization enhances service interoperability,
simplifies the definition of new service interfaces, and enables more powerful
discovery, management, and development tools.

2.2 Web Service Environments
Operationally, there are several important facets of a Web service that require
further description. These components are illustrated in Figure 1 and explained below.

Figure 1 Facets related to a Web service

In Figure 1 a Web service (labeled 1 in the figure) is a software component that
performs some function, such as posting a purchase order. Web services may
provide operations that access or manipulate the state held in other resources within
the system. A Web service is a component deployed within some runtime
environment (2), for example a Web application server such as IBM’s WebSphere or
JBoss. The runtime environment is responsible for hosting the code of the Web
service and for dispatching messages to the Web service. The environment may also
provide other qualities of service to the Web service, such as security and
transactions.

A Web service’s interface (3), described by a Web service description language such
as WSDL [WSDL 1.1], defines the Web service’s capabilities in terms of a collection

3
1 5 4

2

6
7

Modeling Stateful Resources with Web Services 8

of operations that may be invoked by other entities (called service requestors) in a
distributed system. Each operation is described in terms of message exchanges that
define both the format of the message used to invoke an operation and the message
format(s) of possible response message(s), including fault messages.

The runtime environment provides a message processing facility (4) that can receive
messages (5) from requestors. This component may support one or more network
transport protocols, such as HTTP, SMTP, or IIOP. The term endpoint is often used
for this facet of the runtime environment, as this component is made available to the
distributed computing fabric at a particular network address. Other responsibilities of
the endpoint component include translating the message envelope into a format
understandable by the service (for example, converting on-the-wire XML into a
collection of Java objects) and (6) dispatching the message to the target service
implementation identified by the address (URL) and other components of the
message. Note that whereas Web services are created within (or, as we sometimes
say, deployed in) a runtime environment at a particular endpoint address (i.e., the
network identity of the message processing facility of the runtime environment),
each Web service is itself uniquely identified by an address that combines the
endpoint address to which it is deployed plus some additional identity component
specific to that Web service.

The Web service implementation is responsible for receiving the message, processing
the message—potentially interacting with other services and stateful resources (7)—
and, if appropriate for the message exchange, formatting and sending a response
message. Many Web services themselves play the role of a service requestor,
initiating message exchanges with other Web services.

2.3 A Brief Taxonomy of State and Services
A thorough taxonomy of interface, state, and instances is beyond the scope of this
paper. However, to provide context for the material that follows, we provide the
following brief overview of possible associations of state with an interface.

1) A stateless service implements message exchanges with no access or use of
information not contained in the input message. A simple example is a service
that compresses and decompresses documents, where the documents are
provided in the message exchanges with the service.

2) A conversational service implements a series of operations such that the
result of one operation depends on a prior operation and/or prepares for a
subsequent operation. The service uses each message in a logical stream of
messages to determine the processing behavior of the service. The behavior
of a given operation is based on processing preceding messages in the logical
sequence. Many interactive Web sites implement this pattern through use of
HTTP sessions and cookies.

3) A service that acts upon stateful resources provides access to, or manipulates
a set of logical stateful resources (documents) based on messages it sends
and receives.

We are concerned in this paper with the third model. We believe that approaches
based on the propagation of execution context in message headers, such as those

Modeling Stateful Resources with Web Services 9

introduced by WS-Coordination, WS-Context, and WS-Policy provide the means by
which the the second model can be implemented.

2.4 Stateless Implementations, Stateful Interfaces
When we talk in the third model about a service that acts upon stateful resources,
we mean a service, whose implementation executes against dynamic state, i.e.,
state for which the service is responsible between message exchanges with its
requestors. A Service that acts upon stateful resources may be described “stateless”
if it delegates responsibility for the management of the state to another component
such as a database or file system. Statelessness in the implementation of the service
itself tends to enhance reliability and scalability: a stateless Web service can be
restarted following failure without concern for its history of prior interactions, and
new copies of a stateless Web service can be created (and subsequently destroyed)
in response to changing load. Thus, statelessness is generally viewed as good
engineering practice for Web service implementations.

A consequence of statelessness is that any dynamic state needed for a given
message-exchange execution must be:

• provided explicitly within the request message, whether directly by-value or
indirectly by-reference, and/or

• maintained implicitly within other system components with which the Web
service can interact.

Of course, the Web service may also maintain static state (e.g., preconfigured
references to other system components) within its implementation.

The third model’s characterization of a service that acts upon stateful resources
acknowledges that a “stateless” Web service implementation will frequently interact
with, and cause updates to, dynamic state that is maintained in other system
components, such as a database. In such cases, the identity of the state element(s)
may be either passed in the request message or maintained as static data by the
Web service. The interface offered by such a Web service is clearly stateful, in the
sense that its behavior is defined with respect to underlying state.

3 Modeling State in Web Services
We have pointed out that even when a Web service implementation itself can be
described as a stateless message processor, the message exchanges that it
implements (as defined by its interface) are frequently intended to enable access to,
and/or update of, state maintained by other system components, whether database,
file systems, or other entities.

Given the vital role that access to state plays in many Web service interfaces, it is
important to identify and standardize the patterns by which state is represented and
manipulated, so as to facilitate the construction and use of interoperable services.

To this end, we introduce an approach to modeling stateful resources in a Web
services framework based on a construct that we call a WS-Resource. More
specifically, we define the means by which:

Modeling Stateful Resources with Web Services 10

• a WS-Resource is composed of a Web service and a stateful resource (this
section)

• a stateful resource is used in the execution of Web service message
exchanges (this section);

• WS-Resources can be created and destroyed (Section 4); and

• the definition of a stateful resource can be associated with the interface
description of a Web service to enable well-formed queries against the state
of a WS-Resource, and the state of the WS-Resource can be queried and
modified via Web service message exchanges (Section 5).

3.1 Modeling State: Stateful Resources
The term state is vague and can in principle encompass many different aspects of a
computer system, from the value stored in a specific database record to the seek
time or even temperature of the disk drive. We focus on what we call a stateful
resource, which is defined to:

• have a specific set of state data expressible as an XML document:

• have a well-defined lifecycle; and

• be known to, and acted upon, by one or more Web services.

Examples of system components that may be modeled as stateful resources are files
in a file system, rows in a relational database, and encapsulated objects such as
Entity Enterprise Java beans. A stateful resource can also be a collection or group of
other stateful resources.

Note that this definition concerns how a stateful resource is modeled, not how it is
implemented or represented. A specific resource’s state may be implemented as an
actual XML document that is stored in memory, in the file system, in a database, or
in some XML Repository. Alternatively, the same stateful resource may be
implemented as a logical projection over data constructed or composed dynamically
from programming language objects (such as a J2EE EJB Entity Bean) or from data
returned by executing a command on a private communications channel to a
traditional procedural application or data system.

Multiple independent instances of a given stateful resource type may be created and
destroyed. As we describe in Section 4, an instance of a stateful resource may be
created via a Web service referred to as a stateful resource factory.

As we describe in Section 5, a stateful resource is defined by a single XML Global
Element Declaration (GED) in a given namespace. This GED defines the type of the
root element of the resource’s XML document and hence the type of the stateful
resource itself.

When a stateful resource instance is created, it may be assigned an identity by the
entity that created it. Applications using the resource may assign the resource
additional identities (aliases). A specific form of stateful resource identity may be
used privately by one or more Web service implementations to identify the stateful
resource used in the execution of a given message exchange. The use of a “stateful
resource identifier” as part of Web service message execution is discussed in the
next section.

Modeling Stateful Resources with Web Services 11

3.2 The Implied Resource Pattern
Having defined how we can model elements of state as stateful resources, we now
turn to the question of how stateful resources are referred to by a Web service’s
clients. We define the term implied resource pattern to describe a specific kind of
relationship between a Web service and one or more stateful resources.

The implied resource pattern refers to the mechanisms used to associate a stateful
resource with the execution of message exchanges implemented by a Web service.

• The term implied is used because the stateful resource associated with a
given message exchange is treated as implicit input for the execution of the
message request. By implicit, we mean to say that the requestor does not
provide the stateful resource identifier as an explicit parameter in the body of
the request message. Instead, the stateful resource is implicitly associated
with the execution of the message exchange. This can occur in either a static
or a dynamic way. We say that the stateful resource is associated with the
Web service statically in the situation where the association is made when the
Web service is deployed. We say that the stateful resource is dynamically
associated with the Web service when the association is made at time of
message exchange execution. When performed dynamically, the stateful
resource identifier used to designate the implied stateful resource may be
encapsulated in the WS-Addressing endpoint reference used to address the
target Web service at its endpoint.

• We use the term pattern to indicate that the relationship between Web
services and stateful resources is codified by a set of conventions on existing
Web services technologies, in particular XML, WSDL, and WS-Addressing
[WS-Addressing].

A WS-Addressing endpoint reference is an XML serialization of a network-wide
pointer to a Web service. This pointer may be returned as a result of a Web service
message request to a factory to create a new resource or, alternatively, from the
evaluation of a search query on a registry of resources, or as a result of some
application-specific Web service request.

WS-Addressing standardizes the endpoint reference construct used to represent the
address of a Web service deployed at a given network endpoint. An endpoint
reference may contain, in addition to the endpoint address of the Web service, other
metadata associated with the Web service such as service description information
and reference properties, which help to define a contextual use of the endpoint
reference. The reference properties of the endpoint reference play an important role
in the implied resource pattern.

Note that other patterns for enabling access to stateful resources are possible. For
example, a Web service could maintain the resource identity as static service state,
thus obviating the need to pass that identity in the WS-Addressing endpoint
reference. This design choice implies a one-to-one mapping from Web service
endpoints to stateful resources and thus a need for a unique Web service endpoint
for each stateful resource.

Modeling Stateful Resources with Web Services 12

3.3 WS-Resource and WS-Addressing
When a stateful resource is associated with a Web service and participates in the
implied resource pattern, we refer to the component resulting from the composition
of the Web service and the stateful resource as a WS-Resource.

Let us examine the WS-Addressing-related conventions used in the implied resource
pattern. We show in Figure 2 a WS-Addressing endpoint reference conformant to the
conventions of the implied resource pattern.

Figure 2 - An Endpoint Reference containing a Stateful resource identifier

An endpoint reference (labeled 1 in Figure 2) is returned to the requestor in response
to some request sent to the Web service (2). Let us assume that the processing of
the request resulted in the creation of the stateful resource “C.” We say that the Web
service represents an explicit WS-Resource factory. It is a WS-Resource factory
because the response message contains the endpoint reference of a WS-Resource
which has been composed from the newly created stateful resource and its
associated Web service. The endpoint reference contains information that expresses
the implied resource pattern relationship between the Web service and the newly
created stateful resource.

The endpoint reference (3) contains two important components:

• The wsa:Address component (4) refers to the network transport-specific
address of the Web service (often a URL in the case of HTTP-based
transports). This is the same address that would appear within a port element
in a WSDL description of the Web service.

Service
Requestor

A

B

C

1

5

4

2

<wsa:EndpointReference>
 <wsa:Address>
 http://someOrg.com/aWebService
 </wsa:Address>
 <wsa:ReferenceProperties>
 <tns:resourceID> C </tns:resourceID>
 </wsa:ReferenceProperties>
</wsa:EndpointReference> 3

Modeling Stateful Resources with Web Services 13

• The wsa:ReferenceProperties component may contain an XML serialization of
a stateful resource identifier, as understood by the Web service addressed by
the endpoint reference. The stateful resource identifier represents the stateful
resource to be used in the execution of the request message (5). An endpoint
reference containing a stateful resource identifier is a WS-Resource qualified
endpoint reference.

The XML serialization of the stateful resource identifier uses a service-specific XML
element to represent the stateful resource identifier information that is opaque to the
service requestor. The service requestor’s applications should not examine or
attempt to interpret the contents of the stateful resource identifier. The stateful
resource identifier is meaningful only to the Web service, and is used by the Web
service in an implementation-specific way to identify the WS-Resource related
stateful resource needed for the execution of the request message.

The stateful resource identifier must identify a unique stateful resource to be used in
the execution of the request message. There is no requirement that the value of the
identifier be universally unique, but it must be possible for the Web service to use
the stateful resource identifier to identify the intended WS-Resource related stateful
resource unambiguously. In other words, the scope of the stateful resource identifier
must be unique within the scope of the Web service and may be unique beyond the
scope of the Web service. In addition, multiple identifiers within the scope of a Web
service may refer to the same WS-Resource.

From the point of view of the service requestor, the endpoint reference represents a
pointer to the WS-Resource, composed of a Web service that may be further
constrained to execute its message exchanges against a specific stateful resource.
The service requestor must understand that the endpoint reference refers to a WS-
Resource. In other words, the service requestor must recognize that the endpoint
reference is a WS-Resource-qualified endpoint reference. The use of a WS-Resource-
qualified endpoint reference is illustrated in Figure 3.

Modeling Stateful Resources with Web Services 14

Figure 3 - Using a WS-Resource-qualified endpoint reference

The service requestor’s applications would use the endpoint reference (labeled 1 in
Figure 3) to send messages (2) to the identified Web service (3). When the WS-
Resource’s endpoint reference contains a stateful resource identifier in its
ReferenceProperties component, any request message directed to the service using
that endpoint reference must include the stateful resource identifier.

Note that the ReferenceProperties component of a WS-Addressing message are
processed in a binding-specific way. The WS-Addressing specification mandates that
the ReferenceProperties component of the endpoint reference must appear as part of
any message sent to the Web service identified by the endpoint reference. Each type
of WSDL binding must declare how child elements of the ReferenceProperties
element must appear in messages using that binding. For example, WS-Addressing
specifies that ReferenceProperties elements must appear as SOAP header elements
in the message. In Figure 3, the component labeled (4) illustrates the use of a SOAP
header to propagate the stateful resource identifier, in this case representing the
stateful resource named “C.” The Web service (3) then extracts the stateful resource
identifier from the SOAP message and uses it to locate the stateful resource needed
for the execution of the request message.

3.4 WS-Resource Relationship Cardinality
We need to further refine the WS-Resource relationship between Web services and
stateful resources. In particular, we need to describe the cardinality of the
relationship between the stateful resource and the Web service at both the type and
instance levels.

A Web service can execute message exchanges against zero or more stateful
resources as defined as instances of the resource property document. In a typical

Service
Requestor

<soap:Envelope>
 <soap:Header>
 <tns:resourceID> C </tns:resourceID>
 </soap:Header>
 <soap:Body>
… some message
 </soap:Body>
</soap:Envelope>

A

B

C
3

2

1
C

4

Modeling Stateful Resources with Web Services 15

situation, a single Web service at a particular endpoint is associated with several
individual stateful resources. In some circumstances, the number of stateful
resources acted upon by a single Web service could be extremely large, as for
example in the case of a Web service interface to a file system that models each file
as a distinct WS-Resource related stateful resource.

At the type level, a WSDL 1.1 portType, defining the interface to a Web service, can
be associated with at most one stateful resource property document. The standard
means for forming this association is described below. Any Web service that
implements this portType is by definition a Web service associated with a stateful
resource defined by the resource property document.

One stateful resource property document can be associated with many portTypes.
This one-to-many relationship at the type level allows an individual stateful resource
to be associated with multiple Web services, each of which implements a different
interface.

At the instance level, a stateful resource can be associated with one or more Web
services. The one-to-many relationship between a stateful resource instance and a
Web service can be exploited to allow multiple network protocol or network
endpoints to process messages for the WS-Resource, or to allow different Web
services interfaces to categorize and subset messages that act upon the stateful
resource.

3.5 WS-Resource Encapsulation
The benefits of data encapsulation are well known. Strict encapsulation guarantees
that encapsulated data can only be accessed through well defined operations. These
operations provide a control point, implementing data-related policy enforcement
leading to increased data consistency, control, and integrity. Data encapsulation
facilitates the use of data without the user having to understand the details of the
data implementation, thereby reducing the external dependencies on the
implementation and providing increased design flexibility.

We introduce the implied resource pattern in a way that facilitates varying degrees of
Web service encapsulation of stateful resources. In one extreme, all access to the
state of a given stateful resource can be accomplished with message exchanges
implemented by a single WS-Resource type. On the other hand, a stateful resource
may be part of the definition of multiple WS-Resource types.

An additional form of encapsulation is used to express the association of a stateful
resource with a Web service. The stateful resource identifier is managed by the Web
service itself, not by the service requestor. The use of the stateful resource identifier
within the endpoint reference eliminates the need for the service requestor to have
specific knowledge of the identity and location of the stateful resource encapsulated
by the Web service.

4 WS-Resource Lifecycle
The lifetime of a WS-Resource is defined as the period between its creation and its
destruction. The actual mechanisms by which a specific WS-Resource is created and

Modeling Stateful Resources with Web Services 16

destroyed are implementation-specific. However, we do address the following three
aspects of the WS-Resource lifecycle in the three subsections that follow:

1) WS-Resource creation through the use of a WS-Resource factory,

2) the assignment and use of the stateful resource identifier, and

3) the destruction of a WS-Resource.

4.1 WS-Resource Creation
A WS-Resource may be created by some out-of-band mechanism, or alternatively
(as we discuss here) through the use of a WS-Resource factory. A WS-Resource
factory is any Web service capable of bringing a WS-Resource into existence.
Bringing a WS-Resource into existence consists of creating a new stateful resource,
assigning the new stateful resource an identity, and creating the association between
the new stateful resource and its associated Web service. The response message of a
WS-Resource factory operation contains a WS-Resource-qualified endpoint reference
containing a stateful resource identifier that refers to the new stateful resource,
though a factory may convey the reference to the new WS-Resource through other
means such as placing the WS-Resource-qualified endpoint reference into a registry
for later retrieval.

Note that there may be many types of Web services (e.g., resource registries) that
return WS-Resource-qualified endpoint references in their response messages.
However, unless the Web service message exchange resulted in the actual creation
of the WS-Resource referred to in the returned WS-Resource-qualified endpoint
reference, the message exchange is not considered a WS-Resource factory
operation.

Note also that what we refer to here as a WS-Resource factory is a use pattern for
Web services, not a single standard operation. This use pattern may be encoded in a
variety of different Web service operations that may, for example, create one or
many WS-Resources.

4.2 WS-Resource Identity
We describe and contrast the role and use of WS-Resource identity from two
perspectives:

1. From the private perspective of the WS-Resource implementation, and

2. From the public perspective of a service requestor to whom an endpoint
reference to a WS-Resource is provided.

Recall that, as stated in Section 3.3, each stateful resource has at least one form of
identity that identifies that unique stateful resource component within the WS-
Resource composition. This identity MAY be used as a “stateful resource identifier”
which has a specific role as a component in a reference to the WS-Resource. The
stateful resource identifier is placed into the reference properties portion of a WS-
Addressing endpoint reference. That endpoint reference is then said to be WS-
Resource qualified. A WS-Resource-qualified endpoint reference can then be made
available to other entities in a distributed system, which can subsequently use that
endpoint reference to direct requests to the WS-Resource.

Modeling Stateful Resources with Web Services 17

For a Web service with which a stateful resource is associated, the stateful resource
identifier carried within a request message is meaningful. The Web service
implementation understands the content of the implementation-dependent stateful
resource identifier, and can use that information to identify the stateful resource to
be used in the message execution.

A service requestor that obtains access to a WS-Resource-qualified endpoint
reference should not examine or attempt to interpret the value of the stateful
resource identifier. Even an attempt by the service requestor to compare the
contents of two stateful resource identifiers is considered invalid. From the
perspective of the service requestor, the content of the stateful resource identifier
within the endpoint reference is opaque.

So, if the stateful resource identifier is not to be used as a public form of the stateful
resource identity, how would a service requestor reason about the public identity of a
stateful resource component of a WS-Resource? The short answer is that the
semantic meaning of the stateful resource identity, and the means by which it is
defined and exposed to a service requestor, is Web service implementation
dependent. At the current time, there are no adopted Web service specifications that
provide for the definition of stateful resource identity. Nor is there any definition of
the means by which the identity of a stateful resource is obtained by a service
requestor.

Whether or not the identity of a stateful resource is exposed to a service requestor is
a property of a particular Web service design. However, we believe many Web
services will provide the ability to retrieve the identity of the stateful resource
component of a WS-Resource. The identity should be a portable, namespace-scoped
value. Portability is important as it allows one application to pass the identity to
another. Namespace scoping is important as it allows for disambiguation of multiple
identities that may originate from different sources.

We envision that a common approach for exposing the identity of the stateful
resource component of a WS-Resource will be to treat the identity as one or more
resource state properties expressed in the WS-Resource’s resource properties
document. This approach would allow a service requestor to direct a query against
the document, targeting the properties understood to represent the identity of the
stateful resource component of the WS-Resource. If the identity is exposed as one or
more WS-Resource properties, the Web service should ensure read-only access to
those properties. Typically, it would be invalid to allow a service requestor to change
the identity of a stateful resource.

As another option, the Web service may implement application-specific message
exchanges intended to provide access to the identity of the stateful resource
component of the WS-Resource. We anticipate that many applications will recognize
the need to introduce message exchanges related to stateful resource identity. Some
such exchanges may provide for retrieving identity, and some may provide stateful
resource comparison and equality checks.

4.3 WS-Resource Destruction
A requestor that sends a message request to a WS-Resource factory that causes the
creation of a new WS-Resource will typically only be interested in that new WS-

Modeling Stateful Resources with Web Services 18

Resource for some finite period. After that time, it should be possible to destroy the
WS-Resource so that its associated system resources can be reclaimed.

The definition of specific interfaces used to support the destruction of WS-Resources
is beyond the scope of this paper. However, we can describe general requirements.

A service requestor that wishes to cause the destruction of a WS-Resource uses the
appropriate WS-Resource-qualified endpoint reference to send a destroy request
message to the Web service identified by the endpoint reference. The stateful
resource identifier within the endpoint reference is used to identify the stateful
resource, and therefore the WS-Resource, to be destroyed. The receipt of the
response to the destroy request message represents a point of synchronism between
the service requestor and the Web service receiving the destroy request message.
Upon receipt of the response message, any further message exchanges with the
service using a stateful resource identifier representing the destroyed stateful
resource must result in a fault message indicating that the WS-Resource was
unknown, absent any other fault conditions that may take precedence.

We can also define message exchanges for establishing and renewing scheduled
destruction times on WS-Resources, so as to provide for time based destruction in
situations where a client cannot or will not destroy a WS-Resource explicitly.

5 WS-Resource Properties
We now discuss the means by which the type and values of a WS-Resource’s state
can be viewed and modified by service requestors through its Web services interface.
The key ideas are as follows.

• The WS-Resource has an XML resource property document defined using XML
schema.

• Service requestors may determine a WS-Resource’s type by retrieving the
WSDL portType definition via standard means.

• Service requestors may use Web services message exchanges to read, modify,
and query the XML document representing the WS-Resource’s state.

We use the term resource property to refer to an individual component of a WS-
Resource’s state. We call the XML document describing the type of a stateful
resource within the WS-Resource composition a WS-Resource properties document.
Each resource property is represented as an XML element within the WS-Resource
properties document.

5.1 WS-Resource Properties Document
The WS-Resource properties document acts as a view on, or projection of, the actual
state of the WS-Resource. The document serves to define the structure upon which
service-requestor-initiated query and update messages can be directed. Any
operation that manipulates a resource property via the WS-Resource properties
document must be reflected in the actual implementation of the WS-Resource’s state.

The WS-Resource properties document is described using XML Schema. Specifically,
the WS-Resource properties document is expressed as an XML global element
declaration (GED) in some XML namespace. For example, consider the stateful

Modeling Stateful Resources with Web Services 19

resource “C” mentioned in previous sections. If the state of “C” comprises three
components, named p1, p2, and p3, then its resource properties document, named
“ExampleResourceProperties,” might be defined as follows.

<xs:schema
 targetNamespace="http://example.com/ResourcePropertiesExample"
 xmlns:tns="http://example.com/ResourcePropertiesExample"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
…
... >

 <xs:element name="p1" type= … />
 <xs:element name="p2" type= …/>
 <xs:element name="p3" type= … />

 <xs:element name="ExampleResourceProperties">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:p1" />
 <xs:element ref="tns:p2" />
 <xs:element ref="tns:p3" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
…
</xs:schema>

Service requestors may obtain and examine this XML schema definition of the WS-
Resource properties document, which represents the type of stateful resource “C,” by
various means, including message exchanges defined by WS-MetaDataExchange
[WS-MetaDataExchange].

But how did the service requestor know that the GED named
“ExampleResourceProperties” defines the WS-Resource properties document
associated with the Web service? The WS-Resource properties document declaration
for the Web service occurs in the WSDL definition of the Web service interface. The
WS-Resource properties document declaration is associated with the WSDL portType
definition via the use of a standard attribute, resourceProperties, as in the following
example.

<wsdl:definitions
 targetNamespace="http://example.com/ResourcePropertiesExample"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:wsrp=
 "http://www.ibm.com/xmlns/stdwip/web-services/ws-resourceProperties"
 xmlns:tns="http://example.com/ResourcePropertiesExample"
…>
…
 <wsdl:types>
 <xs:schema>
 <xs:import
 namespace="http://example.com/ResourcePropertiesExample"
 schemaLocation="…"/>
 </xs:schema>
 </wsdl:types>
…

Modeling Stateful Resources with Web Services 20

 <wsdl:portType name="SomePortTypeName"
 wsrp:resourceProperties="tns:ExampleResourceProperties" >
 <operation name="…
…
 </wsdl:portType>
…
</wsdl:definitions>
This portType, with the associated resource properties document, effectively defines
the type of the WS-Resource..

5.2 WS-Resource Property Composition
Web services allow us to construct a new interface from several existing interfaces
via a process of composition. In WSDL 1.1, this composition must be achieved by a
copy-and-paste of the operations defined in the constituent portTypes used in the
composition. For example, the operations defined in an example portType “foo” can
be combined with the operations defined in various standards and specifications to
yield a final, complete set of message exchanges to be implemented by a Web
service.

In addition to operation composition, the designer may also aggregate the WS-
Resource properties defined in the WS-Resource properties documents of the various
constituent portTypes to yield the final, complete WS-Resource property document
declared with the final composed portType. This WS-Resource properties document
composition may be accomplished by adding additional XML element declarations,
using the xs:ref attribute, as demonstrated in the following example.

 <xs:element name="ExampleResourceProperties">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="tns:p1" />
 <xs:element ref="tns:p2" />
 <xs:element ref="tns:p3" />

 <xs:element ref="xxxx:SomeAdditionalResourceProperty"
 xmlns:xxxx= … />

 </xs:sequence>
 </xs:complexType>
 </xs:element>

This WS-Resource properties document was constructed by combining the resource
property elements of the WS-Resource properties document for stateful resource “C”
with a resource property element (SomeAdditionalResourceProperty) defined in some
other namespace.

5.3 Accessing WS-Resource Property Values
The state of a WS-Resource, i.e., the values of resource properties exposed in the
WS-Resource’s resource properties document, can be read, modified, and queried by
using standard Web services messages. We outline these messages that might be
used for this purpose here; details are beyond the scope of this paper.

Modeling Stateful Resources with Web Services 21

The base functionality is to retrieve the value of a single resource property using a
simple Web services request/response message exchange. The request message
identifies the WS-Resource using a WS-Resource-qualified endpoint reference as
described previously and identifies the resource property by the qualified name of its
GED. A slightly more sophisticated variant of this retrieval function can allow the
retrieval of the value of multiple resource properties with a single request/response
message exchange. The Web service responds with a message containing the values
of the requested WS-Resource properties.

It is also possible to use a standard message exchange to execute an arbitrary XPath
expression against the resource properties document. Various query expression
types may be used, for example, to support resource discovery based on the current
values of a WS-Resource’s state.

We also envisage an operation that would allow the values of resource properties to
be inserted, updated, and deleted through the view provided by WS-Resource’s
resource property document.

6 WS-Resource and ACID Properties
The acronym ACID denotes four important properties that must generally apply to
stateful resources used within the context of a transactional unit of work within a
traditional, two-phase commit-enabled transaction system.

• Atomicity requires that the updates to stateful resources used within the
context of a transactional unit of work be made in an all or nothing fashion.

• Consistency refers to the ability of a transaction to leave resources in a
consistent state, even in the event of failure.

• Isolation ensures that partial updates to stateful resources used within the
transaction are not visible outside of the transaction until the end of the
transactional unit of work. Isolation is implemented by means of concurrency
control, or transactional locking, as it is sometimes referred.

• Durability provides for the permanence of stateful resource updates made
under the transactional unit of work.

The ability to associate a transactional recovery policy to the execution of a Web
service message exchange is described in the Web Services Atomic Transaction
specification [WS-AtomicTransaction]. In the presence of a transactional unit of
work, a Web service capable of participating in the transactional protocol must abide
by the rules of two-phase-commit transaction management. However, in the absence
of a transaction management policy, the Web service is under no obligation to
recover the state of the WS-Resource in the event of a failure.

The WS-Resource Framework specifications are not prescriptive with respect to
policy that governs concurrent read or write access to a WS-Resource. The definition
of specific policy governing concurrent updates, whether or not separate message
executions targeting the same stateful resource may be interleaved, and whether
partially completed updates within a given message execution may be observed by
other concurrent requests is beyond the scope of the WS-Resource Framework. If
WS-Resource isolation is needed, we suggest the use of a transaction [WS-
AtomicTransaction] to provide a context within which isolation of updates can be
provided. In the absence of a transactional unit of work, the level of update

Modeling Stateful Resources with Web Services 22

atomicity, recovery, isolation, and durability provided by a Web service is
implementation dependent.

We believe that the ability to declare and attach isolation-level policy to the definition
of a Web service message exchange, whether or not a transactional unit of work is
present, represents a general requirement not met by the current Web service
architecture. In the future, isolation-level policy declarations may be introduced as a
formal part of the WS-Resource Framework.

7 WS-Resource Security
The ability to associate security related policy with a Web service is described in the
WS-Policy and WS-SecurityPolicy specifications which are part of the Web Services
Security Roadmap.. In the presence of a valid security context associated with a
message exchange, a Web service capable of participating in the expressed security
protocols must implement and enforce the security policies. In the absence of such a
security policy, the Web service is under no obligation to secure the execution of the
message exchange nor the state of the WS-Resource.

The WS-Resource definition is not prescriptive with respect to policy that governs
access permission to a WS-Resource. The definition of specific security policy
governing access to the WS-Resource is beyond the scope of the WS-Resource
Framework. If WS-Resource access control is required, we suggest the use of the
functions defined in the WS-Security specifications to provide a security context for
the WS-Resource. In the absence of a valid security context and associated access
control policies, the extent to which the Web service provides security of the WS-
Resource is implementation dependent.

8 Conclusions
We have presented the WS-Resource approach to standardizing the representation of,
and access to, stateful resources in a distributed environment. This approach defines
the patterns by which state is represented and manipulated, so that a Web service
can describe the stateful resources to which it provides access, and a service
requestor can discover the type of that WS-Resource and use standardized
operations to read, update, and query values of its state, and to manage its lifecycle.

The WS-Resource approach facilitates the construction and use of interoperable
services, by making it possible for different service providers and service consumers
to describe, access, and manage their stateful resources in standard ways. Equally
importantly, it introduces support for stateful resources without compromising the
ability to implement Web services as stateless message processors.

9 Acknowledgements
This paper has been developed as a result of joint work with many individuals and
teams. The authors wish to acknowledge contributions from many people, including
Nick Butler, Glen Daniels, Christine Draper, Sonny Fulkerson, Rob High, Jim Knutson,
Tom Maguire, Susan Malaika, David Martin, Bryan Murray, Peter Niblett, Jeff Nick,
Ian Robinson, Chris Sharp, and Jay Unger. We also acknowledge those with whom
we have discussed issues addressed in this paper, including Malcolm Atkinson, Carl
Kesselman, and Savas Parastatidis

Modeling Stateful Resources with Web Services 23

10 References
[OGSI-Refactor]

Foster, I., Frey, J., Graham, S., Tuecke, S., From Open Grid Services
Infrastructure to Web Services Resource Framework: Refactoring and Evolution.

[OGSI-Spec]

Open Grid Services Infrastructure (OGSI) V1.0
http://forge.gridforum.org/projects/ggf-editor/document/draft-ogsi-service-
1/en/1

[Parastatidis]

Parastatidis, S., Webber, J., Watson, P., Rischbeck, T., A Grid Application
Framework based on Web Services Specifications and Practices, Technical Report,
North East Regional e-Science Centre, University of Newcastle.

[Physiology]

Foster, I., Kesselman, C., Nick, J., Tuecke, S., The Physiology of the Grid: An
Open Grid Services Architecture for Distributed Systems Integration, Globus
Project, 2002. Available at http://www.globus.org/research/papers/ogsa.pdf

[SOAP]

The fundamental message enveloping mechanism in Web services.
http://www.w3.org/TR/SOAP.

[Tao]

Burbeck, S. The Tao of e-business Services.
http://www.ibm.com/developerworks/webservices/library/ws-tao/. October, 2000.

[Vogels]

Vogels, W. Web Services are not Distributed Objects: Common Misconceptions
about the Fundamentals of Web Service Technology. IEEE Internet Computing, 7
(6). 2003.

[Web Services]

Ferguson, D., Lovering, B., Shewchuk, J., Storey, T. Secure, Reliable Transacted
Web Services http://www-106.ibm.com/developerworks/webservices/library/ws-
securtrans/

[WS-Addressing]

WS-Addressing, an XML serialization and standard SOAP binding for representing
network wide “pointers” to services.
http://www.ibm.com/developerworks/webservices/library/ws-add/

[WS-Arch]

The W3C Web Services Architecture working group, public draft, August 2003.
http://www.w3.org/TR/2003/WD-ws-arch-20030808/

[WS-AtomicTransaction]

http://www.ibm.com/developerworks/webservices/library/ws-atomtran/

Modeling Stateful Resources with Web Services 24

[WS-MetaDataExchange]

WS-MetadataExchange is a set of Web service mechanisms to exchange policies,
WSDL, schema and other metadata between two or more parties. This
specification is part of the Web services roadmap for WS-Federation.

[WS-Security]
The roadmap to the various security related Web services standards. See:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

[WSDL 1.1]

The Web Services Description Language, version 1.1. W3C Note:
http://www.w3.org/TR/wsdl.

[WSDL 2.0]

The Web Services Description Language, version 2.0. W3C Note:
http://www.w3.org/TR/wsdl20/.

[WSRF]

The Web Services Resource Framework.
http://www-106.ibm.com/developerworks/library/ws-resource/ws-wsrfpaper.html

